Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Med Food ; 25(12): 1146-1154, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36516059

RESUMEN

Orally administered collagen peptides could contribute to antiaging by replacing the degraded extracellular matrix proteins caused by photoaging. This study aimed to evaluate the efficacy and safety of low-molecular-weight collagen peptides for treating photoaged and dry skin. In this randomized, placebo-controlled, parallel-group, double-blinded trial, we randomly assigned study participants (n = 100) to either the test product group or placebo group at a 1:1 ratio for 12 weeks. The wrinkle scale score, eye wrinkle volume, roughness parameters, such as the average maximum height of the wrinkle (Rz), arithmetic average within the total measuring length of the wrinkle (Ra), maximum profile valley depth of the wrinkle (Rv), and skin hydration, transepidermal water loss (TEWL), overall elasticity (R2), and ratio of elastic recovery to total deformation (R7) were evaluated at baseline, 6 weeks, and 12 weeks. Safety assessments with serial blood tests were also conducted. Efficacy assessments of data from 84 participants were conducted as the per-protocol analysis. After 12 weeks, the 10-grade crow's feet photo scale score, eye wrinkle volume, skin roughness parameters (Rz, Ra, and Rv), skin elasticity (R2 and R7), skin hydration, and TEWL were significantly improved in the test product group compared to the placebo group. There were no adverse events or abnormalities according to laboratory analysis associated with using the test material during the study period. This study showed that the oral supplementation of low-molecular-weight collagen peptides could improve the wrinkles, elasticity, hydration, and barrier integrity of photoaged facial skin. This clinical study was registered with the Korean Clinical Research Information Service and International Clinical Trials Registry Platform (No: KCT0006500).


Asunto(s)
Envejecimiento de la Piel , Humanos , Piel/metabolismo , Método Doble Ciego , Colágeno/metabolismo , Péptidos/metabolismo , Suplementos Dietéticos
2.
J Med Food ; 25(2): 192-204, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35148197

RESUMEN

In this study, we investigated the protective effects of low-molecular-weight fish collagen from tilapia against melanogenesis in melanocytes, ultraviolet B (UVB)-irradiated Hs27 skin fibroblasts, and hairless mice. We observed collagen production-related pathways in UVB-irradiated Hs27 skin fibroblasts and hairless mice, and the melanogenesis-related pathways in melanocyte and UVB-irradiated hairless mice. The collagen production-related pathways were activated in the UVB-irradiated Hs27 skin fibroblasts and hairless mice. In addition, UVB exposure stimulated the melanogenesis-related pathways in melanocytes and hairless mice. However, treatment with low-molecular-weight fish collagen significantly increased the messenger RNA expressions of collagen production-related factors and significantly decreased the production of cytokines. Furthermore, treatment with low-molecular-weight fish collagen suppressed melanogenesis by inhibiting glutathione synthesis and downregulating melanocyte-inducing transcription factor expression through the suppression of cyclic AMP/protein kinase A/cAMP-responsive binding protein signaling and nitric oxide production. Low-molecular-weight fish collagen exerts protective effects against UVB-induced photoaging, through anti-inflammatory, antioxidant, and anti-melanogenesis activities and could be used for developing effective natural anti-photoaging products.


Asunto(s)
Colágeno/farmacología , Envejecimiento de la Piel , Preparaciones para Aclaramiento de la Piel , Tilapia , Animales , Ratones , Ratones Pelados , Piel , Envejecimiento de la Piel/efectos de los fármacos , Rayos Ultravioleta
3.
J Med Food ; 24(12): 1313-1322, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34861129

RESUMEN

We investigated the effects of GT collagen (Geltech low-molecular-weight fish collagen, FC) on skin moisturization in ultraviolet B (UVB)-irradiated HaCaT cells and SKH-I hairless mice. In vitro, we measured the expression of mRNA genes and proteins related to the skin moisturizing mechanism, hyaluronic acid concentrations, and sphingomyelin concentrations. As a result, FC increased the expression of LCB1, DEGS1, elastin, UGTrel7, and GlcNAc mRNA in UVB-irradiated HaCaT cells. Also, hyaluronic acid level, sphingomyelin level, and protein expressions of hyaluronan synthase (HAS)2 and CerS4 were increased compared to those in the UVB-irradiated control group. In vivo, we measured skin hydration through the expression of mRNA genes and proteins related to the skin moisturizing mechanism and found that the protein expression of HAS2 and CerS4 was increased in the groups taking FC. Moreover, FC intake increased the expression of LCB1, DEGS1, fibrilin-1, UGTrel8, and GlcNAc mRNA in UVB-irradiated SKH-I hairless mice. These results suggest that FC can be utilized to develop products aimed at improving skin moisturization.


Asunto(s)
Colágeno/farmacología , Fenómenos Fisiológicos de la Piel , Piel/efectos de los fármacos , Animales , Células HaCaT , Humanos , Hialuronano Sintasas , Ratones , Ratones Pelados , Piel/efectos de la radiación , Esfingosina N-Aciltransferasa , Rayos Ultravioleta
4.
J Nanosci Nanotechnol ; 21(3): 1742-1747, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33404441

RESUMEN

Currently, the semiconductor manufacturing industry is seeing rapid movement from 2D planar to 3D FinFET technology. Among SCE-enhanced scaled fin structures, depending on stress engineering to increase mobility, merged elevated source-drain (eSD) epi structures are widely used because they can maximize device performance by reducing Rsd. While there is active research on device and epi own defects related to eSD process, there is no study on yield effect. Smart manufacturing (SM) applications, which form the core of Industry 4.0, are difficult to find in bulk-FinFETs, and it is difficult to find hidden systematic defects of complex three-dimensional structures using limited analyses such as in-line monitoring and abnormal trend detection. In this study, we investigate the root-cause of gate to eSD short, which is the primary FinFET yield detractor, and we obtain an optimized solution to improve yield by 25.2% without performance degradation. These improvements are accomplished using our in-house SM platform that consists of four components: a virtual integration (VI) module for defining defects such as physical connection, void, and not open; a hot spot module for identifying the location of needed process control; an advanced analytics module including algorithms for selecting key features and predicting the fail bit; and an optimizer module that can co-optimize yield and performance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...