Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Rev Cardiovasc Med ; 25(3): 76, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39076965

RESUMEN

As a comprehensive secondary prevention program, cardiac rehabilitation (CR) is a beneficial and cost-effective intervention for patients with heart disease, but the participation rate of patients in CR is low globally. In recent years, due to the COVID-19 pandemic and scientific and technological advances, an increasing number of alternative CR modes have been developed, such as remote CR, home-based CR, hybrid CR and virtual CR. These alternative CR modes represent changes and new opportunities for patients with heart disease. In this review, we will discuss in detail the impact of CR on patients with different types of heart disease, review the various alternative CR models, and explore some prospects for the future of CR in the field of heart disease.

2.
Mol Cell Proteomics ; 23(3): 100737, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38354979

RESUMEN

Personalized medicine can reduce adverse effects, enhance drug efficacy, and optimize treatment outcomes, which represents the essence of personalized medicine in the pharmacy field. Protein drugs are crucial in the field of personalized drug therapy and are currently the mainstay, which possess higher target specificity and biological activity than small-molecule chemical drugs, making them efficient in regulating disease-related biological processes, and have significant potential in the development of personalized drugs. Currently, protein drugs are designed and developed for specific protein targets based on patient-specific protein data. However, due to the rapid development of two-dimensional gel electrophoresis and mass spectrometry, it is now widely recognized that a canonical protein actually includes multiple proteoforms, and the differences between these proteoforms will result in varying responses to drugs. The variation in the effects of different proteoforms can be significant and the impact can even alter the intended benefit of a drug, potentially making it harmful instead of lifesaving. As a result, we propose that protein drugs should shift from being targeted through the lens of protein (proteomics) to being targeted through the lens of proteoform (proteoformics). This will enable the development of personalized protein drugs that are better equipped to meet patients' specific needs and disease characteristics. With further development in the field of proteoformics, individualized drug therapy, especially personalized protein drugs aimed at proteoforms as a drug target, will improve the understanding of disease mechanisms, discovery of new drug targets and signaling pathways, provide a theoretical basis for the development of new drugs, aid doctors in conducting health risk assessments and making more cost-effective targeted prevention strategies conducted by artificial intelligence/machine learning, promote technological innovation, and provide more convenient treatment tailored to individualized patient profile, which will benefit the affected individuals and society at large.


Asunto(s)
Inteligencia Artificial , Proteómica , Humanos , Proteómica/métodos , Medicina de Precisión , Espectrometría de Masas
3.
J Food Sci ; 89(1): 566-580, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38126118

RESUMEN

Histamine (HIS) is primarily formed from decarboxylated histidine by certain bacteria with histidine decarboxylase (hdc) activity and is the most toxic biogenic amine. Hdc, which is encoded by the hdc gene, serves as a key enzyme that controls HIS production in bacteria. In this paper, we characterized the changes in microbial and biogenic amines content of traditional Sichuan-style sausage before and after storage and demonstrated that Enterobacteriaceae play an important role in the formation of HIS. To screen for Enterobacteriaceae with high levels of HIS production, we isolated strain RH3 which has a HIS production of 2.27 mg/mL from sausages stored at 37°C for 180 days, using selective media and high-performance liquid chromatography. The strain RH3 can produce a high level of HIS after 28 h of fermentation with a significant hysteresis. Analysis of the physicochemical factors revealed that RH3 still retained its ability to partially produce HIS in extreme environments with pH 3.5 and 10.0. In addition, RH3 exhibited excellent salt tolerance (6.0% NaCl and 1.0% NaNO2 ). Subsequently, RH3 was confirmed as Enterobacter hormaechei with hdc gene deletion by PCR, western blot, and whole-genome sequencing analysis. Furthermore, RH3 exhibited pathogenicity rate of 75.60% toward the organism, indicating that it was not a food-grade safe strain, and demonstrated a high level of conservation in intraspecific evolution. The results of this experiment provide a new reference for studying the mechanism of HIS formation in microorganisms. PRACTICAL APPLICATION: This study provides a new direction for investigating the mechanism of histamine (HIS) formation by microorganisms and provides new insights for further controlling HIS levels in meat products. Further research can control the key enzymes that form HIS to control HIS levels in food.


Asunto(s)
Histamina , Productos de la Carne , Histamina/análisis , Histidina Descarboxilasa/genética , Productos de la Carne/análisis , Eliminación de Gen , Aminas Biogénicas , Enterobacteriaceae/genética , Enterobacter/genética
4.
Microorganisms ; 11(11)2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-38004736

RESUMEN

In order to explore the structural changes and products of histamine degradation by multicopper oxidase (MCO) in Lactiplantibacillus plantarum LPZN19, a 1500 bp MCO gene in L. plantarum LPZN19 was cloned, and the recombinant MCO was expressed in E. coli BL21 (DE3). After purification by Ni2+-NTA affinity chromatography, the obtained MCO has a molecular weight of 58 kDa, and it also has the highest enzyme activity at 50 °C and pH 3.5, with a relative enzyme activity of 100%, and it maintains 57.71% of the relative enzyme activity at 5% salt concentration. The secondary structure of MCO was determined by circular dichroism, in which the proportions of the α-helix, ß-sheet, ß-turn and random coil were 2.9%, 39.7%, 21.2% and 36.1%, respectively. The 6xj0.1.A with a credibility of 68.21% was selected as the template to predict the tertiary structure of MCO in L. plantarum LPZN19, and the results indicated that the main components of the tertiary structure of MCO were formed by the further coiling and folding of a random coil and ß-sheet. Histamine could change the spatial structure of MCO by increasing the content of the α-helix and ß-sheet. Finally, the LC-MS/MS identification results suggest that the histamine was degraded into imidazole acetaldehyde, hydrogen peroxide and ammonia.

5.
EPMA J ; 14(3): 503-525, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37605648

RESUMEN

Objective: The patients with sigmoid colorectal cancer commonly show high mortality and poor prognosis. Increasing evidence has demonstrated that the ubiquitinated proteins and ubiquitination-mediated molecular pathways influence the growth and aggressiveness of colorectal cancer. It emphasizes the scientific merits of quantitative ubiquitinomics in human sigmoid colon cancer. We hypothesize that the ubiquitinome and ubiquitination-mediated pathway networks significantly differ in sigmoid colon cancers compared to controls, which offers the promise for in-depth insight into molecular mechanisms, discovery of effective therapeutic targets, and construction of reliable biomarkers in the framework of predictive, preventive, and personalized medicine (PPPM; 3P medicine). Methods: The first ubiquitinome analysis was performed with anti-K-ε-GG antibody beads (PTMScan ubiquitin remnant motif [K-ε-GG])-based label-free quantitative proteomics and bioinformatics to identify and quantify ubiquitination profiling between sigmoid colon cancer tissues and para-carcinoma tissues. A total of 100 human sigmoid colon cancer samples that included complete clinical information and the corresponding gene expression data were obtained from The Cancer Genome Atlas (TCGA). Ubiquitination was the main way of protein degradation; the relationships between differentially ubiquitinated proteins (DUPs) and their differently expressed genes (DEGs) and between DUPs and their differentially expressed proteins (DEPs) were analyzed between cancer tissues and control tissues. The overall survival of those DUPs was obtained with Kaplan-Meier method. Results: A total of 1249 ubiquitinated sites within 608 DUPs were identified in human sigmoid colon cancer tissues. KEGG pathway network analysis of these DUPs revealed 35 statistically significant signaling pathways, such as salmonella infection, glycolysis/gluconeogenesis, and ferroptosis. Gene Ontology (GO) analysis of 608 DUPs revealed that protein ubiquitination was involved in 98 biological processes, 64 cellular components, 51 molecule functions, and 26 immune system processes. Protein-protein interaction (PPI) network of 608 DUPs revealed multiple high-combined scores and co-expressed DUPs. The relationship analysis between DUPs and their DEGs found 4 types of relationship models, including DUP-up (increased ubiquitination level) and DEG-up (increased gene expression), DUP-up and DEG-down (decreased gene expression), DUP-down (decreased ubiquitination level) and DEG-up, and DUP-down and DEG-down. The relationship analysis between DUPs and their DEPs found 4 types of relationship models, including DUP-up and DEP-up (increased protein expression), DUP-up and DEP-down (decreased protein expression), DUP-down and DEP-up, and DUP-down and DEP-down. Survival analysis found 46 overall survival-related DUPs in sigmoid colon cancer, and the drug sensitivity of overall survival-related DUPs were identified. Conclusion: The study provided the first differentially ubiquitinated proteomic profiling, ubiquitination-involved signaling pathway network changes, and the relationship models between protein ubiquitination and its gene expression and between protein ubiquitination and its protein expression, in human sigmoid colon cancer. It offers the promise for deep insights into molecular mechanisms of sigmoid colon cancer, and discovery of effective therapeutic targets and biomarkers for patient stratification, predictive diagnosis, prognostic assessment, and personalized treatment in the context of 3P medicine. Supplementary Information: The online version contains supplementary material available at 10.1007/s13167-023-00328-2.

6.
EPMA J ; 14(3): 477-502, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37605650

RESUMEN

Objective: Hepatic carcinoma is one of the most common types of malignant tumors in the digestive system, and its biological characteristics determine its high rate of metastasis and recurrence after radical resection, leading to a poor prognosis for patients. Increasing evidence demonstrates that phosphoproteins and phosphorylation-mediated molecular pathways influence the occurrence and development of hepatic carcinoma. It is urgent need to develop early-stage biomarkers for improving diagnosis, therapy, medical service, and prognostic assessment. We hypothesize that phosphoproteome and phosphorylation-mediated signaling pathway networks significantly differ in human early-stage primary hepatic carcinomas relative to control liver tissues, which will identify the key differentially phosphorylated proteins and phosphorylation-mediated signaling pathway network alterations in human early-stage primary hepatic carcinoma to innovate predictive diagnosis, prognostic assessment, and personalized medical services and progress beyond the state of the art in the framework of predictive, preventive, and personalized medicine (PPPM). Methods: Tandem mass tag (TMT)-based quantitative proteomics coupled with TiO2 enrichment of phosphopeptides was used to identify phosphorylation profiling, and bioinformatics was used to analyze the pathways and biological functions of phosphorylation profiling between early-stage hepatic carcinoma tissues and tumor-adjacent normal control tissues. Furthermore, the integrative analysis with transcriptomic data from TCGA database obtained differently expressed genes (DEGs) corresponding to differentially phosphorylated proteins (DPPs) and overall survival (OS)-related DPPs. Results: A total of 1326 phosphopeptides derived from 858 DPPs in human early-stage primary hepatic carcinoma were identified. KEGG pathway network analysis of 858 DPPs revealed 33 statistically significant signaling pathways, including spliceosome, glycolysis/gluconeogenesis, B-cell receptor signaling pathway, HIF-1 signaling pathway, and fatty acid degradation. Gene Ontology (GO) analysis of 858 DPPs revealed that protein phosphorylation was involved in 57 biological processes, 40 cellular components, and 37 molecular functions. Protein-protein interaction (PPI) network constructed multiple high-combined scores and co-expressed DPPs. Integrative analysis of transcriptomic data and DPP data identified 105 overlapped molecules (DPPs; DEGs) between hepatic carcinoma tissues and control tissues and 125 OS-related DPPs. Overlapping Venn plots showed 14 common molecules among datasets of DPPs, DEGs, and OS-related DDPs, including FTCD, NDRG2, CCT2, PECR, SLC23A2, PNPLA7, ANLN, HNRNPM, HJURP, MCM2, STMN1, TCOF1, TOP2A, and SSRP1. The drug sensitivities of OS-related DPPs were identified, including LMOD1, CAV2, UBE2E2, RAPH1, ANXA5, HDLBP, CUEDC1, APBB1IP, VCL, SRSF10, SLC23A2, EPB41L2, ESR1, PLEKHA4, SAFB2, SMARCAD1, VCAN, PSD4, RDH16, NOP56, MEF2C, BAIAP2L2, NAGS, SRSF2, FHOD3, and STMN1. Conclusions: Identification and annotation of phosphoproteomes and phosphorylation-mediated signaling pathways in human early-stage primary hepatic carcinoma tissues provided new directions for tumor prevention and treatment, which (i) helps to enrich phosphorylation functional research and develop new biomarkers; (ii) enriches phosphorylation-mediated signaling pathways to gain a deeper understanding of the underlying mechanisms of early-stage primary hepatic carcinoma; and (iii) develops anti-tumor drugs that facilitate targeted phosphorylated sites. We recommend quantitative phosphoproteomics in early-stage primary hepatic carcinoma, which offers great promise for in-depth insight into the molecular mechanism of early-stage primary hepatic carcinoma, the discovery of effective therapeutic targets/drugs, and the construction of reliable phosphorylation-related biomarkers for patient stratification, predictive diagnosis, prognostic assessment, and personalized medical services in the framework of PPPM. Supplementary Information: The online version contains supplementary material available at 10.1007/s13167-023-00335-3.

7.
EPMA J ; 14(3): 443-456, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37605654

RESUMEN

Human growth hormone (GH) is the indispensable hormone for the maintenance of normal physiological functions of the human body, including the growth, development, metabolism, and even immunoregulation. The GH is synthesized, secreted, and stored by somatotroph cells in adenohypophysis. Abnormal GH is associated with various GH-related diseases, such as acromegaly, dwarfism, diabetes, and cancer. Currently, some studies found there are dozens or even hundreds of GH proteoforms in tissue and serum as well as a series of GH-binding protein (GHBP) proteoforms and GH receptor (GHR) proteoforms were also identified. The structure-function relationship of protein hormone proteoforms is significantly important to reveal their overall physiological and pathophysiological mechanisms. We propose the use of proteoformics to study the relationship between every GH proteoform and different physiological/pathophysiological states to clarify the pathogenic mechanism of GH-related disease such as pituitary neuroendocrine tumor and conduct precise molecular classification to promote predictive preventive personalized medicine (PPPM / 3P medicine). This article reviews GH proteoformics in GH-related disease such as pituitary neuroendocrine tumor, which has the potential role to provide novel insight into pathogenic mechanism, discover novel therapeutic targets, identify effective GH proteoform biomarker for patient stratification, predictive diagnosis, and prognostic assessment, improve therapy method, and further accelerate the development of 3P medicine.

9.
Front Endocrinol (Lausanne) ; 13: 970843, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36187110

RESUMEN

Abnormal ubiquitination is extensively associated with cancers. To investigate human lung cancer ubiquitination and its potential functions, quantitative ubiquitinomics was carried out between human lung squamous cell carcinoma (LSCC) and control tissues, which characterized a total of 627 ubiquitin-modified proteins (UPs) and 1209 ubiquitinated lysine sites. Those UPs were mainly involved in cell adhesion, signal transduction, and regulations of ribosome complex and proteasome complex. Thirty three UPs whose genes were also found in TCGA database were significantly related to overall survival of LSCC. Six significant networks and 234 hub molecules were obtained from the protein-protein interaction (PPI) analysis of those 627 UPs. KEGG pathway analysis of those UPs revealed 47 statistically significant pathways, and most of which were tumor-associated pathways such as mTOR, HIF-1, PI3K-Akt, and Ras signaling pathways, and intracellular protein turnover-related pathways such as ribosome complex, ubiquitin-mediated proteolysis, ER protein processing, and proteasome complex pathways. Further, the relationship analysis of ubiquitination and differentially expressed proteins shows that ubiquitination regulates two aspects of protein turnover - synthesis and degradation. This study provided the first profile of UPs and molecular networks in LSCC tissue, which is the important resource to insight into new mechanisms, and to identify new biomarkers and therapeutic targets/drugs to treat LSCC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Carcinoma de Células Escamosas/genética , Humanos , Pulmón/metabolismo , Neoplasias Pulmonares/genética , Lisina , Fosfatidilinositol 3-Quinasas/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Ubiquitina/metabolismo , Ubiquitinación
10.
Molecules ; 27(18)2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36144575

RESUMEN

Liver-related disease caused by alcohol is a frequent disorder of the hepatic tract. Heavy consumption of alcohol in a short period causes oxidative damage to the liver. Sea cucumber is abundant in nutrients and its various extracts have been studied for antioxidant properties. One peptide was isolated and identified from Apostichopus japonicus in our recent study. We investigated the benefits of the peptide in a model of acute ethanol-induced male C57BL/6J mice. Dietary intake of the peptide could attenuate hepatomegaly, hepatitis and the accumulation of lipid droplets, and increase antioxidant enzyme activities in mice with acute alcoholic liver injury. The results indicated that a 20 mg/kg peptide supplement could activate the Nrf2/HO-1 pathway and block the nuclear translocation of NF-κB to alleviate oxidative stress and inflammation. In addition, the preventive effects of peptide supplementation may be related to autophagy. This study suggests that dietary supplementation with a sea cucumber-derived peptide is one of the potential candidates to alleviate acute alcoholic liver injury.


Asunto(s)
Hepatopatías Alcohólicas , Stichopus , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Etanol/metabolismo , Hígado , Hepatopatías Alcohólicas/tratamiento farmacológico , Hepatopatías Alcohólicas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Estrés Oxidativo , Péptidos/metabolismo , Péptidos/farmacología
11.
Glob Heart ; 16(1): 17, 2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33833941

RESUMEN

Background: Patient education is the first step in implementing a cardiac rehabilitation (CR) program and a powerful tool for promoting behavioral changes in cardiac patients. In China, the clinical workload is so heavy that a short and reliable tool for assessing disease-related knowledge is needed for targeted patient education. Objective: The aim of this study was to translate, adapt and validate the Chinese version of the Coronary Artery Disease Education Questionnaire - Short Version (CADE-Q SV). Methods: The CADE-Q SV was translated to simplified Chinese and culturally adapted to the Chinese context. The translated version was reviewed by a committee of seven experts in cardiovascular disease, and the content validity of the questionnaire was established. The psychometric properties of the questionnaire were analyzed considering the responses of 240 CR patients. The Kuder-Richardson-20 (KR-20) coefficient and Cronbach's alpha were used to assess internal consistency. The intraclass correlation coefficient (ICC) was used to assess test-retest reliability. The criterion-related validity was evaluated by determining whether there were differences in the total scores of patients with different educational levels. Confirmatory factor analysis (CFA) was used to assess the factor structure. Results: Three items from the original version were adapted to reflect Chinese culture. The content validity index was 0.94. The KR-20 score was 0.856. All ICC values were > 0.70. The knowledge scores of patients with different educational levels were significantly different, indicating that the criterion-related validity of the Chinese CADE-Q-SV was acceptable. CFA validated the five-factor structure of the Chinese CADE-Q-SV. Conclusion: The Chinese CADE-Q SV questionnaire has good reliability and validity. This short, efficient tool can be completed quickly, assess disease-related knowledge in cardiovascular patients and serve as a reference for individualized patient education in China. It can also be used to evaluate the effectiveness of CR-related patient education interventions.


Asunto(s)
Rehabilitación Cardiaca , Enfermedad de la Arteria Coronaria , China , Enfermedad de la Arteria Coronaria/diagnóstico , Conocimientos, Actitudes y Práctica en Salud , Humanos , Reproducibilidad de los Resultados , Encuestas y Cuestionarios
12.
Anal Methods ; 13(16): 1905-1910, 2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33913945

RESUMEN

The chirality of amino acids plays an important role in biological and medical sciences. The development of achiral small-molecule probes that can simultaneously determine the absolute configuration, enantiomeric excess, and total concentration of amino acids is significant. We reported the currently available achiral coumarin aldehyde probe that could form Schiff bases with free amino acids at room temperature to induce CD signals and change UV-vis signals. The red-shifted UV-vis signals were independent of the substrate's chirality and could be used to determine the total concentration. Conversely, the enantioselective CD signals could be used to determine the absolute configuration and enantiomeric excess. The usefulness and practicability of this sensing method were demonstrated by analyzing 6 non-racemic phenylalanine samples with different enantiomeric compositions and concentrations.


Asunto(s)
Aminas , Aminoácidos , Aldehídos , Cumarinas , Estereoisomerismo
13.
Ecotoxicol Environ Saf ; 163: 331-339, 2018 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-30059877

RESUMEN

Cadmium (Cd) is one of the most toxic metals released into the environment. Here, we investigated the protective role of Zn2+ and/or N-acetyl-L-cysteine (NAC) against Cd cytotoxicity in the erythrocytes of Arbor Acres (AA) broiler chickens. Four hundred one-day-old AA chickens were divided into 12 groups for in vitro and in vivo studies. Zn2+ and/or NAC was given to the Cd exposed AA chickens to assess their protective roles. This was accomplished by investigating nuclear morphological abnormalities, oxidative stress (SOD, CAT, GPx, GSH and T-AOC), cell apoptosis, ROS accumulation and mitochondrial membrane potential (MMP). Results showed that Cd led to dose- and time-dependent cytotoxicity in the erythrocytes of AA chickens characterized by morphological abnormalities, nucleus damage, increased apoptosis rate and antioxidants depletion. Zn2+ or NAC significantly decreased the erythrocyte apoptosis, ROS production and mitochondrial membrane depolarization caused by Cd. SOD, CAT, GPx, GSH and T-AOC activities significantly decreased both in serum and erythrocytes of Cd exposed AA chickens. The supplementation with Zn2+ or NAC alleviated Cd induced oxidative stress through promoting SOD or GPx/GSH activities respectively. NAC presented a better role in reducing apoptosis, improving antioxidant activities more than Zn2+ in vitro. The combined use of Zn2+ and NAC enhanced cytoprotection in Cd exposed erythrocytes of AA chickens compared to Zn2+ or NAC alone. In conclusion, Zn2+ and NAC exerted remarkable protective roles in Cd exposed erythrocytes of AA chickens by inhibiting cell apoptosis and oxidative stress, and this provides a promising approach to antagonize Cd poisoning in poultry.


Asunto(s)
Acetilcisteína/farmacología , Antioxidantes/farmacología , Cadmio/toxicidad , Eritrocitos/efectos de los fármacos , Zinc/farmacología , Animales , Apoptosis/efectos de los fármacos , Pollos , Estrés Oxidativo/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...