Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(13): 16809-16819, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38502907

RESUMEN

Polymers/polymer matrix composites possessing low dielectric constants (low-k polymer dielectrics) contribute to the advance of electronics, for instance, microprocessor chips, mobile phone antennas, and data communication terminals. However, the intrinsic long-chain structural characteristic results in poor thermal conductivities, which draw heat accumulation and undermine the outstanding low-k performance of polymers. Herein, multisource free-volume effects that combine two novel kinds of extra free volume with the known in-cage free volume of polyhedral oligomeric silsesquioxanes (POSSs) are discussed to reduce the capacity for dielectric constant reduction. The multisource free-volume effects of POSSs are associated with the thermal conductive network formed by the hexagonal boron nitride (BN) in the polymer matrix. The results show a decent balance between low-k performance (dielectric constant is 2.08 at 1 MHz and 1.98 at 10 GHz) and thermal conductivity (0.555 W m-1 K-1, 4.91 times the matrix). The results provide a new idea to maximize the free-volume effects of POSSs to optimize dielectric properties together with other desired performances for the dielectrics.

2.
Biomacromolecules ; 25(3): 1923-1932, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38394470

RESUMEN

Fatty acid cellulose esters (FACE) are common cellulose-based thermoplastics, and their thermoplasticity is determined by both the contents and the lengths of the side chains. Herein, various FACE were synthesized by the ball-milling esterification of cellulose and fatty acyl chlorides containing 10-18 carbons, and their structures and thermoplasticity were thoroughly studied. The results showed that FACE with high degrees of substitution (DS) and low melting flow temperatures (Tf) were achieved as the chain lengths of the fatty acyl chlorides were reduced. In particular, a cellulose decanoate with a DS of 1.85 and a Tf of 186 °C was achieved by feeding 3 mol of decanoyl chloride per mole anhydroglucose units of cellulose. However, cellulose stearate (DS = 1.53) synthesized by the same protocols cannot melt even at 250 °C. More interestingly, the fatty acyl chlorides with 10 and 12 carbons resulted in FACE with superior toughness (elongation at break up to 94.4%). In contrast, due to their potential crystallization of the fatty acyl groups with 14-18 carbons, the corresponding FACE showed higher tensile strength and Young's modulus than the others. This study provides some theoretical basis for the mechanochemical synthesis of thermoplastic FACE with designated properties.


Asunto(s)
Cloruros , Ésteres , Ésteres/química , Estudios de Factibilidad , Esterificación , Celulosa/química
3.
Adv Healthc Mater ; 13(8): e2303216, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38156501

RESUMEN

Bacterial cellulose is an extracellular polysaccharide produced by microorganisms, offering advantages such as high water-holding capacity, flexibility, and biocompatibility. However, its lack of bactericidal activity hampers its wide application. Usnic acid, a secondary metabolite derived from lichens of the Usnea genus, is recognized for its antibacterial and anti-biofilm efficiency, coupled with anti-inflammatory properties. Its water insolubility presents challenges for wide utilization and stable release. Sanxan gel, a novel polysaccharide, exhibits exceptional freeze-thaw stability, suspension properties, and high elasticity, rendering it effective as a suspending agent to improve the bioavailability of water-insoluble drugs. In this study, a hydrogel membrane is designed by combining bacterial cellulose and usnic acid suspended in sanxan gel through a simple in situ microorganism fermentation. The obtained membranes demonstrate excellent ability for sustained drug release, strong eradication capability against tested bacteria in both in vitro and in vivo experiments, effective inhibition of biofilm formation, and excellent hemocompatibility and cytocompatibility. Additionally, the composite membranes promote wound healing with reduced inflammation and bacterial infection in a full-thickness wound infection model in mice. This study provides innovative insights and strategies for the development of functional dressings for infected wounds in future clinical applications.


Asunto(s)
Celulosa , Hidrogeles , Animales , Ratones , Bacterias , Antibacterianos , Agua
4.
J Appl Microbiol ; 134(12)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38059862

RESUMEN

AIMS: Microbial enhanced oil recovery (MEOR) is dedicated to enhancing oil recovery by harnessing microbial metabolic activities and their byproducts within reservoir rocks and fluids. Therefore, the investigation of microbial mobility and their extensive distribution within crude oil is of paramount importance in MEOR. While microscale models have been valuable for studying bacterial strain behavior in reservoirs, they are typically limited to 2D representations of porous media, making them inadequate for simulating actual reservoir conditions. Consequently, there is a critical need for 3D models and dependable visualization methods to observe bacterial transport and metabolism within these complex reservoir environments. METHODS AND RESULTS: Bacterial cellulose (bc) is a water-insoluble polysaccharide produced by bacteria that exhibits biocompatibility and biodegradability. It holds significant potential for applications in the field of MEOR as an effective means for selective plugging and spill prevention during oil displacement processes. Conditionally cellulose-producing strain, FY-07-G, with green fluorescent labeling, was engineered for enhanced oil recovery. 3D micro-visualization model was constructed to directly observe the metabolic activities of the target bacterial strain within porous media and to assess the plugging interactions between cellulose and the medium. Additionally, X-ray computed tomography (X-CT) technology was employed for a comprehensive analysis of the transport patterns of the target strain in oil reservoirs with varying permeabilities. The results indicated that FY-07-G, as a microorganism employing biopolymer-based plugging principles to enhance oil recovery, selectively targets and seals regions characterized by lower permeability and smaller pore spaces. CONCLUSIONS: This work provided valuable insights into the transport and metabolic behavior of MEOR strains and tackled the limitation of 2D models in faithfully replicating oil reservoir conditions, offering essential theoretical guidance and insights for the further application of oil-displacing bacterial strains in MEOR processes.


Asunto(s)
Petróleo , Petróleo/metabolismo , Bacterias/metabolismo , Yacimiento de Petróleo y Gas , Celulosa/metabolismo , Tomografía Computarizada por Rayos X
5.
ACS Appl Mater Interfaces ; 15(47): 54986-54995, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-37967332

RESUMEN

Elastic sponges are ideal materials for triboelectric nanogenerators (TENGs) to harvest irregular and random mechanical energy from the environment. However, the conductive design of the elastic materials in TENGs often limits its applications. In this work, we have demonstrated that an elastic conductive sponge can be used as the triboelectric layer and electrode for TENGs. Such an elastic conductive sponge is prepared by a simple way of adsorbing multiwalled carbon nanotubes and monomers of pyrrole to grow conductive polypyrroles on the surface of an elastic polyurethane (PU) sponge. Due to the porous structure of the PU sponge and the conductive multiwalled carbon nanotubes (MWCNTs), PPy on the surface of PU could provide a large contact area to improve the output performance of TENGs, and the conductive sponge-based TENG could generate an output of open-circuit voltage of 110 V or a short-circuit current of 12 µA, respectively. The good flexibility of the conductive PU sponge makes the TENG harvest the kinetic energy of disordered motion with different amplitudes, allowing for human motion monitoring. Furthermore, the porous structure of PU and the synergistic effects of PPy and MWCNTs enable the conductive sponge to sense NH3 as a self-powered NH3 sensor. This work offers a simple way to construct a flexible TENG system for random mechanical energy harvesting, human motion monitoring, and self-powered NH3 sensing.

6.
Materials (Basel) ; 16(16)2023 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-37629898

RESUMEN

Precipitate free zones (PFZs) near grain boundaries generally soften alloys. The quenching rate after solution treatment is an important factor influencing the width of PFZs in Al-Mg-Si-Cu alloy. This study explored the effects of high quenching rates on the grain boundary microstructures and mechanical properties of an Al-Mg-Si-Cu alloy. Samples of various thickness were quenched in water at room temperature and in ethylene glycol at -40 °C, respectively. The results showed that the rapidly quenched samples at -40 °C exhibited better comprehensive mechanical properties than the water-quenched samples. Transmission electron microscopy studies revealed the rapidly quenched samples had wider PFZs, shorter intragranular precipitates, and larger grain boundary precipitates (GBPs) than water-quenched samples. It is proposed that when the quenching rate exceeds the critical cooling rate, e.g., in water quenching or rapid quenching, the formation of PFZs is controlled by the solute depletion mechanism rather than the vacancy depletion mechanism. The nucleation and growth of GBPs thus lead to the depletion of solute atoms, resulting in wider PFZs rather than thinner PFZs according to previous knowledge. This research provides valuable insights into the application of rapid quenching technology for modifying alloys' microstructures and properties.

8.
ACS Appl Mater Interfaces ; 15(31): 37563-37570, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37498012

RESUMEN

Triboelectric nanogenerators have shown great potential in the area of self-powered gas sensors in the past decade. In this paper, we developed a triboelectric nanogenerator (TENG) based on spiky structured ZIF-8@ZnO, which can harvest energy with high efficiency and act as a self-powered methanol sensor. The open-circuit voltage and short-circuit current generated by a ZIF-8@ZnO-based TENG is 58 V and 10 µA, achieving 2.4 times and 3.3 times enhancement compared to ZnO-based TENGs. The TENG can charge capacitors fast and light up at least 40 LEDs. ZIF-8@ZnO-based TENGs show good sensitivity and selectivity to methanol gas at room temperature due to the porous structure provided by ZIF-8 and the heterostructure of ZIF-8@ZnO. The response of ZIF-8@ZnO-based TENG to methanol reaches 30.35% at 100 ppm with excellent response (∼5.9 s) and recovery time (∼2.2 s). This work demonstrates the application of MOF-modified metal oxide semiconductors based on a self-powered gas sensor and proposes a promising solution to enhance the output performance and sensing properties of TENGs based on metal oxide semiconductors.

9.
Adv Healthc Mater ; 12(27): e2300713, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37498795

RESUMEN

The extracellular matrix microenvironment of bone tissue comprises several physiological cues. Thus, artificial bone substitute materials with a single cue are insufficient to meet the demands for bone defect repair. Regeneration of critical-size bone defects remains challenging in orthopedic surgery. Intrinsic viscoelastic and piezoelectric cues from collagen fibers play crucial roles in accelerating bone regeneration, but scaffolds or implants providing integrated cues have seldom been reported. In this study, it is aimed to design and prepare hierarchically porous poly(methylmethacrylate)/polyethyleneimine/poly(vinylidenefluoride) composite implants presenting a similar viscoelastic and piezoelectric microenvironment to bone tissue via anti-solvent vapor-induced phase separation. The viscoelastic and piezoelectric cues of the composite implants for human bone marrow mesenchymal stem cell line stimulate and activate Piezo1 proteins associated with mechanotransduction signaling pathways. Cortical and spongy bone exhibit excellent regeneration and integration in models of critical-size bone defects on the knee joint and femur in vivo. This study demonstrates that implants with integrated physiological cues are promising artificial bone substitute materials for regenerating critical-size bone defects.


Asunto(s)
Sustitutos de Huesos , Andamios del Tejido , Humanos , Osteogénesis , Sustitutos de Huesos/farmacología , Porosidad , Mecanotransducción Celular , Regeneración Ósea , Ingeniería de Tejidos
10.
ACS Appl Mater Interfaces ; 14(46): 52411-52421, 2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36370386

RESUMEN

Phase change materials (PCMs) as one of the most potential latent heat storage techniques have been widely used for thermal management and energy storage. However, simultaneously imparting flexibility, high thermal conductivity, and considerable energy storage density to organic PCMs remains challenging. In this work, a coupling strategy combining substance exchange and magnetic orientation has been proposed to fabricate phase change gels (PCGs) with thermally induced flexibility and high through-plane thermal conductivity. In the PCGs, synthesized boron nitride/ferroferric oxide (BN@Fe3O4) particles and polyacrylic acid (PAA) precursor liquid are introduced to polyethylene glycol (PEG) aqueous solution, and a magnetic field is applied in the process of PAA network construction to promote ordered arrangement of BN@Fe3O4 along the direction of the magnetic field. Consequently, PEG is wrapped by the cross-linked PAA supporting network, forming PCGs with excellent shape stability and thermally induced flexibility. The vertical orientation structure of BN@Fe3O4 endows the PCGs with an enhanced through-plane thermal conductivity of up to 1.07 W m-1 K-1 at a BN@Fe3O4 loading of 25.6 wt % with an additional enhancement of 215% compared to the composite without BN. The thermally conductive leakage-proof PCGs present great application potential in heat storage and management.

11.
Colloids Surf B Biointerfaces ; 220: 112874, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36201863

RESUMEN

Doxorubicin (DOX) is widely used in the treatment of many tumors, but the dose-dependent toxicity limits its further application. In this study, a unique strategy was developed to improve the anti-tumor effects of free DOX and lower its in vivo toxicity by constructing novel glutathione (GSH)-sensitive poloxamer188-b-polycaprolactone-S-S-doxorubicin nanoparticles (PPSSD NPs). After uptake by tumor cells, the disulfide bonds in the PPSSD NPs would be cloven by reacting with GSH. Then, a lethal dose of DOX was released in tumor cells. The uptake of PPSSD NPs by 4T1 cells was proved using fluorescence microscopy by co-localization of PPSSD NPs and 4', 6-diamidino-2-phenylindole (DAPI). Cell tests suggested that the PPSSD NPs showed high anti-tumor cells (4T1) activity but low cytotoxicity against normal cells (293 t). The in vivo toxicity and anti-tumor effects of the PPSSD NPs were studied with Kunming and Balb/c mice as models, respectively. The H&E slices, blood routine and biochemistry indexes of the PPSSD NPs treated mice indicated that the PPSSD NPs did not induce obvious in vivo toxicity. The PPSSD NPs showed higher in vitro anti-4T1 cells activity than free DOX. Furthermore, the in vivo anti-tumor study, TUNEL and H&E slices suggested that the PPSSD NPs exhibited excellent anti-tumor effects. In a word, the novel PPSSD NPs did not only improve the anti-tumor effect of DOX, but also decrease its cytotoxicity to normal tissues.


Asunto(s)
Nanopartículas , Neoplasias , Profármacos , Ratones , Animales , Profármacos/farmacología , Doxorrubicina/química , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Glutatión , Ratones Endogámicos BALB C , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos
12.
ACS Nano ; 16(10): 16806-16815, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36194701

RESUMEN

Wearable strain sensors have huge potential for applications in healthcare, human-machine interfacing, and augmented reality systems. However, the nonlinear response of the resistance signal to strain has caused considerable difficulty and complexity in data processing and signal transformation, thus impeding their practical applications severely. Herein, we propose a simple way to achieve linear and reproducible resistive signals responding to strain in a relatively wide strain range for flexible strain sensors, which is achieved via the fabrication of Janus and heteromodulus elastomeric fiber mats with micropatterns using microimprinting second processing technology. In detail, both isotropic and anisotropic fiber mats can turn into Janus fiber mats with periodical and heteromodulus micropatterns via controlling the fiber fusion and the diffusion of local macromolecular chains of thermoplastic elastomers. The Janus heterogeneous microstructure allows for stress redistribution upon stretching, thus leading to lower strain hysteresis and improved linearity of resistive signal. Moreover, tunable sensing performance can be achieved by tailoring the size of the micropatterns on the fiber mat surface and the fiber anisotropy. The Janus mat strain sensors with high signal linearity and good reproducibility have a very low strain detection limit, enabling potential applications in human-machine interfacing and intelligent control fields if combined with a wireless communication module.


Asunto(s)
Dispositivos Electrónicos Vestibles , Humanos , Reproducibilidad de los Resultados , Elastómeros , Elasticidad
13.
Adv Sci (Weinh) ; 9(33): e2204187, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36216571

RESUMEN

Solar interfacial vapor generation based on low evaporation energy requirements is an effective technology to speed up water purification under natural sunlight, offering great potential to alleviate the current global water crisis. The external electric field and hydrogel are two independent methods enabling low-energy water evaporation. However, the complicated external equipment for generating an electric field and the restricted activation area of hydrogels significantly limit their practical application in steam generation. Thus, a piezoelectric fiber membrane is embedded into a highly hydratable light-absorbing poly(vinyl alcohol) (PVA) hydrogel for synergistic water activation. The integrated evaporator is capable of continuously converting the wave energy reserved in the ocean into electrical energy, activating the water in the hydrogel. It is found that the activation effect leads to an improvement of over 23% compared to a non-piezoelectric hydrogel evaporator. This work provides an evaporation prototype based on the synergistic water activation of wave-triggered electricity and highly hydratable hydrogel.


Asunto(s)
Hidrogeles , Vapor , Alcohol Polivinílico , Agua , Películas Cinematográficas
14.
ACS Appl Mater Interfaces ; 14(40): 45966-45977, 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36166428

RESUMEN

Because of its rather low melt strength, polylactide (PLA) has yet to fulfill its promise as advanced biobased and biodegradable foams to replace fossil-based polymer foams. In this work, PLA vitrimers were prepared by two-step reactive processing from commercial PLA thermoplastics, glycerol, and diphenylmethane diisocyanate (MDI) using Zn(II)-catalyzed addition and transesterification chemistry. The transesterification reaction of PLA and glycerol occurs with zinc acetate as the catalyst, and chain scission will take place due to the alcoholysis of the PLA chains by the free hydroxyl groups from the glycerol. Long-chain PLA with hydroxyl groups can be obtained and then cross-linked with MDI. Rheological analysis shows that the formed cross-linked network can significantly improve melt strength and promote strain hardening under extensional flow. PLA vitrimers still maintain the ability of thermoplastic processing via extrusion and compression. The enhanced melt strength and the rearrangement of network topology facilitate the foaming processing. An expansion ratio as large as 49.2-fold and microcellular foam with a uniform cell morphology can be obtained for PLA vitrimers with a gel fraction of 51.8% through a supercritical carbon dioxide foaming technique. This work provides a new way with the scale-up possibility to enhance the melt strength of PLA, and the broadened range of PLA applicability brought by PLA vitrimers is truly valuable in terms of the realization of a sustainable society.

15.
J Biomater Sci Polym Ed ; 33(17): 2185-2201, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35796690

RESUMEN

In this study, novel redox-sensitive nanoparticles (NPs) were fabricated from the poly(caprolactone) conjugates with disulfide-linked poly(ethylene glycol) (DDMAT- mPEG-S-S-PCL, DPSP). The DPSP polymer was synthesized by ring-opening polymerization (ROP) and reversible addition-fragmentation chain transfer (RAFT) polymerization. The obtaining of the DPSP polymer was confirmed by the 1H nuclear magnetic resonance (1H NMR) and Fourier transform infrared spectroscopy (FTIR) spectra. The DPSP NPs were fabricated with the solvent-evaporation method. Docetaxel (DTX) was employed as a model drug and encapsulated into the DPSP NPs. The in vitro anti-tumor activity of the DTX-loaded DPSP NPs and free DTX against the breast cancer cells (4T1) were evaluated by MTT assay. The cargo-free DPSP NPs were in circular shapes with an average diameter of 107.8 ± 0.4 nm. These NPs displayed redox-responsive behavior in the presence of glutathione. Animal experiments indicated that the DPSP NPs showed excellent blood compatibility and good bio-security. Cell tests suggested that the DPSP NPs could be taken in by 4T1 cells, smoothly, which improved the anti-tumor activity of free DTX.


Asunto(s)
Antineoplásicos , Nanopartículas , Animales , Docetaxel , Disulfuros , Portadores de Fármacos/química , Antineoplásicos/farmacología , Antineoplásicos/química , Poliésteres/química , Polietilenglicoles/química , Nanopartículas/química , Polímeros/química , Oxidación-Reducción
16.
Sensors (Basel) ; 22(10)2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35632068

RESUMEN

In power inspection, uncertainties, such as wind gusts in the working environment, affect the trajectory of the inspection UAV (unmanned aerial vehicle), and a sliding mode adaptive robust control algorithm is proposed in this paper to solve this problem. For the nonlinear and under-driven characteristics of the inspection UAV system, a double closed-loop control system which includes a position loop and attitude loop is designed. Lyapunov stability analysis is used to determine whether the designed system could finally achieve asymptotic stability. Sliding-mode PID control and a backstepping control algorithm are applied to analyze the superiority of the control algorithm proposed in this paper. A PX4 based experimental platform system is built and experimental tests were carried out under outdoor environment. The effectiveness and superiority of the control algorithm are proposed in this paper. The experimental results show that the sliding mode PID control can achieve good accuracy with smaller computing costs. For nonlinear interference, the sliding mode adaptive robust control strategy can achieve higher trajectory tracking accuracy.

17.
ACS Appl Mater Interfaces ; 14(19): 22521-22530, 2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35522609

RESUMEN

Soft actuators with integrated mechanical and actuation properties and self-sensing ability are still a challenge. Herein, a stiffness variable polyolefin elastomer (POE) with a reversible shape memory effect is prepared by introducing a typical phase change material, i.e., paraffin wax (PW). It is found that the variable stiffness of POE induced by PW can balance the reversible strain and load-bearing capability of actuators. Especially, carbon nanotubes (CNTs) are concentrated in a thin surface layer by spraying and hot pressing in the soft state of POE/PW blends, providing signal transductions for the strain and temperature perception for actuators. Taking advantage of tunable reversible deformation and mechanical transformation of the POE/PW actuator, different biomimetic robotics, including grippers with high load-bearing capability (weight-lifting ratio > 146), walking robots that can sense angles of joints, and high-temperature warning robots are demonstrated. A scheme combining the variable stiffness and electrical properties provides a versatile strategy to integrate actuation performance and self-sensing ability, inspiring the development of multifunctional composite designs for soft robotics.

18.
J Colloid Interface Sci ; 618: 399-410, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35358805

RESUMEN

This work demonstrates a hierarchical structure design with mixed holey graphene oxide (HGO) and Ni(OH)2 active material layer made by one-pot hydrothermal reaction clinging to Nickel foam as backbone and ice-template oriented graphene oxide (GO) aerogel as filling, aiming to create an asymmetric solid supercapacitor (ASC) device with compliable flexibility and high electrochemical performance. The effects of hydrothermal treatment and ice-template freezing parameters on electrochemical stability under repeated exterior deformation are discussed, the optimal parameters result in a high areal capacitance of 479.8 mF/cm2 in asymmetric supercapacitor device setup. The use of porous HGO and oriented GO aerogel synergistically contribute to the high energy and power density up to 1.69 Wh/m2 and 9 W/m2 as well as excellent electrochemical performance retention under repeated curving deformation which reaches 102% thanks to a novel activation process. The electrode assembly including metal foam and the buffering GO aerogel should be instructive for future supercapacitor design.

19.
ACS Appl Mater Interfaces ; 14(13): 15678-15686, 2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35321545

RESUMEN

Elastomer fiber mat sensors, which are capable of perceiving mechanical stimuli, temperature, and vapor of chemicals, are highly desirable for designing wearable electronics and human-robot interfacing devices due to good wearability, skin affinity, and durability, and so on. However, it is still challenging to fabricate multiresponsive flexible wearable sensors with three-dimensional (3D) architecture using simple material and structure design. Herein, we report an all-in-one multiresponsive thermoplastic polyurethane (TPU) nanofiber mat sensors composed of crimped elastomer fibers with deposited platinum nanoparticles (PtNPs) on the fiber surface. The 1D TPU nanofibers could be transferred to nanofibers with different 3D nanofiber architectures by controllable macromolecular chain relaxation of aligned elastomer polymers upon poor solvent annealing. The conductive networks of PtNPs on wavy TPU fibers enable the sensor susceptible to multiple stimuli like strain/pressure, humidity, and organic vapors. Besides, the 3D nanofiber architectures allow the strain sensor to detect wider tensile strain and pressure with higher sensitivity due to delicate fiber morphology and structure control. Therefore, this work provides new insights into the fabrication of multifunctional flexible sensors with 3D architecture in an easy way, advancing the establishment of a multiple signal monitoring platform for the health care and human-machine interfacing.


Asunto(s)
Nanopartículas del Metal , Nanofibras , Dispositivos Electrónicos Vestibles , Conductividad Eléctrica , Humanos , Nanofibras/química , Platino (Metal)
20.
Food Chem ; 375: 131674, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-34848087

RESUMEN

Curcumin (CUR) is a food additive approved by World Health Organization. But the shortcomings, such as poor water solubility, easy oxidation and degradation, limit its application. In this study, the CUR-loaded poloxamer188-based nanoparticles (CUR/PTT NPs) were fabricated to improve the stability and water solubility of CUR. Studies found the spherical CUR/PTT NPs had an average size of 98.71 ± 0.64 nm. Stability experiments displayed CUR/PTT NPs were extremely stable in different conditions. XRD analysis indicated the changes of crystal structures of CUR might be the main cause of the improved water solubility. Reducing power and anti-degradation tests suggested CUR/PTT NPs could improve the anti-oxidation and anti-degradation of CUR. Additionally, the results of body weight gains, hematological examination, organ coefficients, hematoxylin and eosin staining demonstrated CUR/PTT NPs bearing the excellent in vivo bio-security. Therefore, this study may provide a new idea for the combination of food industry and nanoparticles.


Asunto(s)
Curcumina , Nanopartículas , Bioaseguramiento , Tamaño de la Partícula , Poloxámero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...