Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(35): 24526-24536, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39177295

RESUMEN

A novel series of excited-state intramolecular proton transfer (ESIPT) emitters, namely, DPNA, DPNA-F, and DPNA-tBu, endowed with dual intramolecular hydrogen bonds, were designed and synthesized. In the condensed phase, DPNAs exhibit unmatched absorption and emission spectral features, where the minor 0-0 absorption peak becomes a major one in the emission. Detailed spectroscopic and dynamic approaches conclude fast ground-state equilibrium among enol-enol (EE), enol-keto (EK), and keto-keto (KK) isomers. The equilibrium ratio can be fine-tuned by varying the substitutions in DPNAs. Independent of isomers and excitation wavelength, ultrafast ESIPT takes place for all DPNAs, giving solely KK tautomer emission maximized at >650 nm. The spectral temporal evolution of ESIPT was resolved by a state-of-the-art technique, namely, the transient grating photoluminescence (TGPL), where the rate of EK* → KK* is measured to be (157 fs)-1 for DPNA-tBu, while a stepwise process is resolved for EE* → EK* → KK*, with a rate of EE* → EK* of (72 fs)-1. For all DPNAs, the KK tautomer emission shows a narrowband emission with high photoluminescence quantum yields (PLQY, ∼62% for DPNA in toluene) in the red, offering advantages to fabricate deep-red organic light-emitting diodes (OLED). The resulting OLEDs give high external quantum efficiency with a spectral full width at half-maximum (FWHM) as narrow as ∼40 nm centered at 666-670 nm for DPNAs, fully satisfying the BT. 2020 standard. The unique ESIPT properties and highly intense tautomer emission with a small fwhm thus establish a benchmark for reaching red narrowband organic electroluminescence.

2.
Sci Rep ; 6: 31771, 2016 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-27558173

RESUMEN

Glomerular hypertension is an important factor exacerbating glomerular diseases to end-stage renal diseases because, ultimately, it results in glomerular sclerosis (especially in hypertensive and diabetic nephropathy). The precise mechanism of glomerular sclerosis caused by glomerular hypertension is unclear, due partly to the absence of suitable in vitro or in vivo models capable of mimicking and regulating the complex mechanical forces and/or organ-level disease processes. We developed a "glomerulus-on-a-chip" (GC) microfluidic device. This device reconstitutes the glomerulus with organ-level glomerular functions to create a disease model-on-a chip that mimics hypertensive nephropathy in humans. It comprises two channels lined by closely opposed layers of glomerular endothelial cells and podocytes that experience fluid flow of physiological conditions to mimic the glomerular microenvironment in vivo. Our results revealed that glomerular mechanical forces have a crucial role in cellular cytoskeletal rearrangement as well as the damage to cells and their junctions that leads to increased glomerular leakage observed in hypertensive nephropathy. Results also showed that the GC could readily and flexibly meet the demands of a renal-disease model. The GC could provide drug screening and toxicology testing, and create potential new personalized and accurate therapeutic platforms for glomerular disease.


Asunto(s)
Hipertensión Renal/fisiopatología , Enfermedades Renales/fisiopatología , Glomérulos Renales/fisiopatología , Dispositivos Laboratorio en un Chip , Nefritis/fisiopatología , Actinas/metabolismo , Animales , Adhesión Celular , Técnicas de Cocultivo , Citoesqueleto/metabolismo , Humanos , Hipertensión/fisiopatología , Inmunoglobulina G/metabolismo , Técnicas In Vitro , Riñón/fisiopatología , Fallo Renal Crónico/fisiopatología , Podocitos/citología , Ratas , Ratas Endogámicas SHR , Microglobulina beta-2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...