Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
2.
Cancer Cell ; 42(5): 869-884.e9, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38579725

RESUMEN

The tumor microenvironment (TME) in pancreatic ductal adenocarcinoma (PDAC) involves a significant accumulation of cancer-associated fibroblasts (CAFs) as part of the host response to tumor cells. The origins and functions of transcriptionally diverse CAF populations in PDAC remain poorly understood. Tumor cell-intrinsic genetic mutations and epigenetic dysregulation may reshape the TME; however, their impacts on CAF heterogeneity remain elusive. SETD2, a histone H3K36 trimethyl-transferase, functions as a tumor suppressor. Through single-cell RNA sequencing, we identify a lipid-laden CAF subpopulation marked by ABCA8a in Setd2-deficient pancreatic tumors. Our findings reveal that tumor-intrinsic SETD2 loss unleashes BMP2 signaling via ectopic gain of H3K27Ac, leading to CAFs differentiation toward lipid-rich phenotype. Lipid-laden CAFs then enhance tumor progression by providing lipids for mitochondrial oxidative phosphorylation via ABCA8a transporter. Together, our study links CAF heterogeneity to epigenetic dysregulation in tumor cells, highlighting a previously unappreciated metabolic interaction between CAFs and pancreatic tumor cells.


Asunto(s)
Fibroblastos Asociados al Cáncer , Carcinoma Ductal Pancreático , Epigénesis Genética , Neoplasias Pancreáticas , Microambiente Tumoral , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Ratones , Animales , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo
3.
Dig Dis Sci ; 69(4): 1263-1273, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38451429

RESUMEN

BACKGROUND: A grim prognosis of pancreatic cancer (PCa) was attributed to the difficulty in early diagnosis of the disease. AIMS: Identifying novel biomarkers for early detection of PCa is thus urgent to improve the overall survival rates of patients. METHODS: The study was performed firstly by identification of candidate microRNAs (miRNAs) in formalin-fixed, paraffin-embedded tissues using microarray profiles, and followed by validation in a serum-based cohort study to assess clinical utility of the candidates. In the cohorts, a total of 1273 participants from four centers were retrospectively recruited as two cohorts including training and validation cohort. The collected serum specimens were analyzed by real-time polymerase chain reaction. RESULTS: We identified 27 miRNAs expressed differentially in PCa tissues as compared to the benign. Of which, the top-four was selected as a panel whose diagnostic efficacy was fully assessed in the serum specimens. The panel exhibited superior to CA19-9, CA125, CEA and CA242 in discriminating patients with early stage PCa from healthy controls or non-PCa including chronic pancreatitis as well as pancreatic cystic neoplasms, with the area under the curves (AUC) of 0.971 (95% CI 0.956-0.987) and 0.924 (95% CI 0.899-0.949), respectively. Moreover, the panel eliminated interference from other digestive tumors with a specificity of 90.2%. CONCLUSIONS: A panel of four serum miRNAs was developed showing remarkably discriminative ability of early stage PCa from either healthy controls or other pancreatic diseases, suggesting it may be developed as a novel, noninvasive approach for early screening of PCa in clinic.


Asunto(s)
MicroARNs , Neoplasias Pancreáticas , Humanos , MicroARNs/genética , Estudios Retrospectivos , Estudios de Cohortes , Biomarcadores de Tumor , Detección Precoz del Cáncer , Neoplasias Pancreáticas/patología
5.
Biomacromolecules ; 24(11): 4843-4853, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37801393

RESUMEN

Adhesive-caused injury is a great threat for extensive full-thickness skin trauma because extra-strong adhesion can incur unbearable pain and exacerbate trauma upon removal. Herein, inspired by the mussel, we designed and fabricated an adhesive antibacterial hydrogel dressing based on dynamic host-guest interaction that enabled on-demand stimuli-triggered removal to effectively care for wounds. In contrast with most hard-to-removable dressing, this adhesive antibacterial hydrogel exhibited strong adhesion property (85 kPa), which could achieve painless and noninvasive on-demand separation within 2 s through a host-guest competition mechanism (amantadine). At the same time, the hydrogel exhibited rapid self-healing properties, and the broken hydrogel could be completely repaired within 5 min. The hydrogel also had excellent protein adsorption properties, mechanical properties, antibacterial properties, and biocompatibility. This on-demand removal was facilitated by the introduction of amantadine as a competitive guest, without any significant adverse effects on cell activity (>90%) or wound healing (98.5%) in vitro. The full-thickness rat-skin defect model and histomorphological evaluation showed that the hydrogel could significantly promote wound healing and reduce scar formation by regulating inflammation, accelerating skin re-epithelialization, and promoting granulation tissue formation. These results indicate that the developed adhesive antibacterial hydrogel offers a promising therapeutic strategy for the healing of extensive full-layer skin injuries.


Asunto(s)
Hidrogeles , Piel , Animales , Ratas , Hidrogeles/farmacología , Adsorción , Amantadina , Antibacterianos/farmacología
6.
Cancer Immunol Immunother ; 72(8): 2701-2716, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37097516

RESUMEN

BACKGROUND: Checkpoint-based immunotherapy has failed to elicit responses in the majority of patients with pancreatic cancer. In our study, we aimed to identify the role of a novel immune checkpoint molecule V-set Ig domain-containing 4 (VSIG4) in pancreatic ductal adenocarcinoma (PDAC). METHODS: Online datasets and tissue microarray (TMA) were utilized to analyze the expression level of VSIG4 and its correlation with clinical parameters in PDAC. CCK8, transwell assay and wound healing assay were applied to explore the function of VSIG4 in vitro. Subcutaneous, orthotopic xenograft and liver metastasis model was established to explore the function of VSIG4 in vivo. TMA analysis and chemotaxis assay were conducted to uncover the effect of VSIG4 on immune infiltration. Histone acetyltransferase (HAT) inhibitors and si-RNA were applied to investigate factors that regulate the expression of VSIG4. RESULTS: Both mRNA and protein levels of VSIG4 were higher in PDAC than normal pancreas in TCGA, GEO, HPA datasets and our TMA. VSIG4 showed positive correlations with tumor size, T classification and liver metastasis. Patients with higher VSIG4 expression were related to poorer prognosis. VSIG4 knockdown impaired the proliferation and migration ability of pancreatic cancer cells both in vitro and in vivo. Bioinformatics study showed positive correlation between VSIG4 and infiltration of neutrophil and tumor-associated macrophages (TAMs) in PDAC, and it inhibited the secretion of cytokines. According to our TMA panel, high expression of VSIG4 was correlated with fewer infiltration of CD8+ T cells. Chemotaxis assay also showed knockdown of VSIG4 increased the recruitment of total T cells and CD8+ T cells. HAT inhibitors and knockdown of STAT1 led to decreased expression of VSIG4. CONCLUSIONS: Our data indicate that VSIG4 contributes to cell proliferation, migration and resistance to immune attack, thus identified as a promising target for PDAC treatment with good prognostic value.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Hepáticas , Neoplasias Pancreáticas , Humanos , Proteínas de Punto de Control Inmunitario , Linfocitos T CD8-positivos/metabolismo , Carcinoma Ductal Pancreático/patología , Neoplasias Pancreáticas/patología , Pronóstico , Dominios de Inmunoglobulinas , Neoplasias Hepáticas/patología , Neoplasias Pancreáticas
7.
Apoptosis ; 28(7-8): 1090-1112, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37079192

RESUMEN

Pancreatic cancer (PC) is a highly malignant digestive tract tumor, with a dismal 5-year survival rate. Recently, cuproptosis was found to be copper-dependent cell death. This work aims to establish a cuproptosis-related lncRNA signature which could predict the prognosis of PC patients and help clinical decision-making. Firstly, cuproptosis-related lncRNAs were identified in the TCGA-PAAD database. Next, a cuproptosis-related lncRNA signature based on five lncRNAs was established. Besides, the ICGC cohort and our samples from 30 PC patients served as external validation groups to verify the predictive power of the risk signature. Then, the expression of CASC8 was verified in PC samples, scRNA-seq dataset CRA001160, and PC cell lines. The correlation between CASC8 and cuproptosis-related genes was validated by Real-Time PCR. Additionally, the roles of CASC8 in PC progression and immune microenvironment characterization were explored by loss-of-function assay. As showed in the results, the prognosis of patients with higher risk scores was prominently worse than that with lower risk scores. Real-Time PCR and single cell analysis suggested that CASC8 was highly expressed in pancreatic cancer and related to cuproptosis. Additionally, gene inhibition of CASC8 impacted the proliferation, apoptosis and migration of PC cells. Furthermore, CASC8 was demonstrated to impact the expression of CD274 and several chemokines, and serve as a key indicator in tumor immune microenvironment characterization. In conclusion, the cuproptosis-related lncRNA signature could provide valuable indications for the prognosis of PC patients, and CASC8 was a candidate biomarker for not only predicting the progression of PC patients but also their antitumor immune responses.


Asunto(s)
Neoplasias Pancreáticas , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , Apoptosis/genética , Neoplasias Pancreáticas/genética , Muerte Celular , Microambiente Tumoral/genética , Neoplasias Pancreáticas
8.
Nat Commun ; 14(1): 861, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36792623

RESUMEN

To explore the mechanism of coadaptation and the potential drivers of pancreatic ductal adenocarcinoma (PDAC) metastasis to the liver, we study key molecules involved in this process and their translational value. Premetastatic niche (PMN) and macrometastatic niche (MMN) formation in a mouse model is observed via CT combined with 3D organ reconstruction bioluminescence imaging, and then we screen slit guidance ligand 2 (SLIT2) and its receptor roundabout guidance receptor 1 (ROBO1) as important factors. After we confirm the expression and distribution of SLIT2 and ROBO1 in samples from PDAC patients and several mouse models, we discover that SLIT2-ROBO1-mediated coadaptation facilitated the implantation and outgrowth of PDAC disseminated tumour cells (DTCs) in the liver. We also demonstrate the dependence receptor (DR) characteristics of ROBO1 in a follow-up mechanistic study. A neutralizing antibody targeting ROBO1 significantly attenuate liver metastasis of PDAC by preventing the coadaptation effect. Thus, we demonstrate that coadaptation is supported by the DR characteristics in the PMN and MMN.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Hepáticas , Neoplasias Pancreáticas , Animales , Ratones , Carcinoma Ductal Pancreático/genética , Movimiento Celular , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Transducción de Señal , Neoplasias Pancreáticas
9.
Hepatobiliary Pancreat Dis Int ; 22(2): 169-178, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35508435

RESUMEN

BACKGROUND: ADAMTS (a disintegrin and metalloproteinase with thrombospondin-like motifs) family, a group of extracellular multifunctional enzymes, has been proven to play a pivotal role in the tumor. In pancreatic cancer, the role and mechanism of this family remain unclear. The present study aimed to figure out the hub gene of ADAMTSs and explore the exact roles in the prognosis and biological functions in pancreatic ductal adenocarcinoma (PDAC). METHODS: We used several databases to analyze the ADAMTS family and then screen out the hub genes. The expression of ADAMTS12 in 106 pairs of PDAC tumors and adjacent normal tissues was examined by immunohistochemistry, and its correlations with clinical parameters were further analyzed. The impacts of ADAMTS12 on the migration of PDAC cells were predicted by gene set enrichment analysis and confirmed by transwell assays. The potential impacts of ADAMTS12 on the epithelial-mesenchymal transition (EMT) were identified by database analysis and experimental proof of real-time quantitative polymerase chain reaction (qPCR) and Western blotting. RESULTS: Our study found that ADAMTS12 was a crucial gene in PDAC, and it was highly expressed in tumor tissues when compared to that in the adjacent tissues. ADATMS12 had predictive value of a poor prognosis for PDAC. The elevation of ADAMTS12 was parallel to the progression of PDAC. Inhibition of ADAMTS12 suppressed the migration of PDAC cells and interfered with the process of EMT. CONCLUSIONS: ADAMTS12 is a crucial member of ADAMTSs in PDAC and a predictor of poor prognosis. Additionally, based on its impacts on migration and metastasis in PDAC and the relationship with EMT, ADAMTS12 plays a role of an oncogene in PDAC and may be a promising target for treatment.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Transición Epitelial-Mesenquimal/genética , Línea Celular Tumoral , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/patología , Pronóstico , Regulación Neoplásica de la Expresión Génica , Movimiento Celular/genética , Proliferación Celular/genética , Proteínas ADAMTS/genética , Proteínas ADAMTS/metabolismo , Neoplasias Pancreáticas
10.
J Mater Chem B ; 10(31): 6026-6037, 2022 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-35894134

RESUMEN

The development of hydrogel dressings provides unprecedented opportunities for clinical medicine. However, the traditional hydrogel dressings cannot achieve controllable adhesion and separation, which often brings unbearable pain and secondary damage to patients during removal. In this work, a starch-regulated adhesive hydrogel dressing with controllable separation properties is reported. This hydrogel dressing can achieve rapid separation through the dissociation competition mechanism of polar small molecules, which will not cause any damage or discomfort to the skin or tissues, and greatly facilitate dressing replacement. The adhesive strength of the hydrogel reaches 0.06 MPa, and remains relatively stable after repeated utilization. Meanwhile, the inhibition rate of the hydrogel for E. coli, S. aureus and C. albicans is more than 99.9%. At the same time, the hydrogel also has good swelling properties, mechanical properties and biocompatibility, and exhibits a high healing efficiency (95.01 ± 3.76%) in a rat full-thickness skin defect model. This novel hydrogel dressing with controllable separation properties provides a facile and effective method for wound management and treatment, and has great promise for long-term application of wound dressings.


Asunto(s)
Adhesivos , Hidrogeles , Animales , Vendajes , Escherichia coli , Hidrogeles/farmacología , Ratas , Staphylococcus aureus , Almidón
11.
Carcinogenesis ; 43(8): 787-796, 2022 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-35553652

RESUMEN

BACKGROUND: Although transcription factor homeobox A10 (HOXA10) plays an important role in regulating the development of the pancreas, a pathway of HOXA10 participates in pancreatic ductal adenocarcinoma (PDAC) progression has not been revealed. METHODS: Immunohistochemistry assays were applied to demonstrate the relationship between HOXA10 expression and PDAC progression. Functional assays were used to illustrate the oncogenic role of HOXA10 in PDAC progression. Regulatory mechanisms of HOXA10 induced IKKß gene transcription and the nuclear transcription factor kappa B (NF-κB) signal pathways activation were also investigated in PDAC cells. RESULTS: In the current study, we show that HOXA10 expression increased in PDAC with higher tumor stage and poor patient survival in public RNA-seq data suggesting HOXA10 is associated with PDAC progression. HOXA10 promotes PDAC cell proliferation, anchorage colony formation, and xenograft growth by activating canonical NF-κB signaling both in vitro and in vivo. Mechanically, HOXA10 up-regulates IKKß gene transcription directly and subsequently sustain the activation of NF-κB independent of tumor necrosis factor-alpha in PDAC cells. CONCLUSION: Collectively, up-regulation of HOXA10 gene expression promote cell growth and tumor progression through directly activating canonical NF-κB signaling in PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Proteínas Homeobox A10 , Humanos , Quinasa I-kappa B/genética , FN-kappa B/genética , FN-kappa B/metabolismo , Conductos Pancreáticos/patología , Neoplasias Pancreáticas/patología , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo , Neoplasias Pancreáticas
12.
Cancer Lett ; 538: 215693, 2022 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-35472437

RESUMEN

Owing to the lack of early diagnosis, pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal tumours. Because acinar-to-ductal metaplasia (ADM) is a critical process to pancreatic regeneration and PDAC initiation, we applied GSE65146, a dataset composed of transcripts at different time points in wild-type and KrasG12D mutant mice upon pancreatitis induction, to obtain regeneration- and tumour initiation-related genes. By overlapping with genes differentially expressed in human PDAC, we defined the initiation- and progression-related genes, and the most prognostic gene, SULF2, was selected for further verification. By using multiple PDAC genetically engineered murine models (GEMMs), we further verified that the expression of SULF2 was increased at the ADM and PDAC stages. Functionally, SULF2 was able to promote the dedifferentiation of acinar cells as well as the metastatic ability of PDAC. Additionally, our study revealed that SULF2 could enhance TGFß-SMAD signalling via GDF15. More importantly, serum SULF2 was elevated in patients with PDAC, and in combination with CA19-9, it provided a better method for PDAC diagnosis. Herein, our study screened out key genes for the initiation and progression of PDAC, providing potential indicators for the diagnosis of the disease.


Asunto(s)
Carcinoma Ductal Pancreático , Factor 15 de Diferenciación de Crecimiento , Neoplasias Pancreáticas , Proteínas Smad , Sulfatasas , Células Acinares , Animales , Carcinoma Ductal Pancreático/patología , Progresión de la Enfermedad , Factor 15 de Diferenciación de Crecimiento/genética , Factor 15 de Diferenciación de Crecimiento/metabolismo , Humanos , Ratones , Neoplasias Pancreáticas/patología , Sulfatasas/metabolismo
13.
Cell Prolif ; 55(5): e13237, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35487760

RESUMEN

OBJECTIVES: This study investigated the specific molecular mechanism and the roles of extracellular matrix protein Spondin 1 (SPON1) in the development of pancreatic ductal adenocarcinoma (PDAC). MATERIALS AND METHODS: The expression pattern and clinical relevance of SPON1 was determined in GEO, Ren Ji and TCGA datasets, further validated by immunohistochemical staining and Kaplan-Meier analysis. Loss and gain of function experiments were employed to investigate the cellular function of SPON1 in vitro. Gene set enrichment analysis, luciferase assay, immunofluorescence and Western blot and immunoprecipitation were applied to reveal the underlying molecular mechanisms. Subcutaneous xenograft model was used to test the role of SPON1 in tumour growth and maintenance in vivo. RESULTS: SPON1 is significantly upregulated in PDAC tumour tissues and correlated with progression of PDAC. Loss and gain of function experiments showed that SPON1 promotes the growth and colony formation ability of pancreatic cancer cells. Combining bioinformatics assays and experimental signalling evidences, we found that SPON1 can enhance the IL-6/JAK/STAT3 signalling. Mechanistically, SPON1 exerts its oncogenic roles in pancreatic cancer by maintaining IL-6R trans-signalling through stabilizing the interaction of soluble IL-6R (sIL-6R) and glycoprotein-130 (gp130) in PDAC cells. Furthermore, SPON1 depletion greatly reduced the tumour burden, exerted positive effect with gemcitabine, prolonging PDAC mice overall survival. CONCLUSIONS: Our data indicate that SPON1 expression is dramatically increased in PDAC and that SPON1 promotes tumorigenicity by activating the sIL-6R/gp130/STAT3 axis. Collectively, our current work suggests SPON1 may be a potential therapy target for PDAC patient.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animales , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Proliferación Celular , Receptor gp130 de Citocinas/genética , Receptor gp130 de Citocinas/metabolismo , Receptor gp130 de Citocinas/uso terapéutico , Proteínas de la Matriz Extracelular/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Interleucina-6/metabolismo , Ratones , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas
14.
Cell Oncol (Dordr) ; 45(3): 367-379, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35486320

RESUMEN

BACKGROUND: Metabolic reprogramming has emerged as a core hallmark of cancer, and cancer metabolism has long been equated with aerobic glycolysis. Moreover, hypoxia and the hypovascular tumor microenvironment (TME) are major hallmarks of pancreatic ductal adenocarcinoma (PDAC), in which glycolysis is imperative for tumor cell survival and proliferation. Here, we explored the impact of interleukin 1 receptor-associated kinase 2 (IRAK2) on the biological behavior of PDAC and investigated the underlying mechanism. METHODS: The expression pattern and clinical relevance of IRAK2 was determined in GEO, TCGA and Ren Ji datasets. Loss-of-function and gain-of-function studies were employed to investigate the cellular functions of IRAK2 in vitro and in vivo. Gene set enrichment analysis, Seahorse metabolic analysis, immunohistochemistry and Western blot were applied to reveal the underlying molecular mechanisms. RESULTS: We found that IRAK2 is highly expressed in PDAC patient samples and is related to a poor prognosis. IRAK2 knockdown led to a significant impairment of PDAC cell proliferation via an aberrant Warburg effect. Opposite results were obtained after exogenous IRAK2 overexpression. Mechanistically, we found that IRAK2 is critical for sustaining the activation of transcription factors such as those of the nuclear factor-κB (NF-κB) family, which have increasingly been recognized as crucial players in many steps of cancer initiation and progression. Treatment with maslinic acid (MA), a NF-κB inhibitor, markedly attenuated the aberrant oncological behavior of PDAC cells caused by IRAK2 overexpression. CONCLUSIONS: Our data reveal a role of IRAK2 in PDAC metabolic reprogramming. In addition, we obtained novel insights into how immune-related pathways affect PDAC progression and suggest that targeting IRAK2 may serve as a novel therapeutic approach for PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Glucólisis , Humanos , Quinasas Asociadas a Receptores de Interleucina-1/genética , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Quinasas Asociadas a Receptores de Interleucina-1/farmacología , FN-kappa B/metabolismo , Neoplasias Pancreáticas/patología , Microambiente Tumoral , Neoplasias Pancreáticas
15.
Mol Oncol ; 15(11): 3076-3090, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33932092

RESUMEN

Hot spot gene mutations in splicing factor 3b subunit 1 (SF3B1) are observed in many types of cancer and create abundant aberrant mRNA splicing, which is profoundly implicated in tumorigenesis. Here, we identified that the SF3B1 K700E (SF3B1K700E ) mutation is strongly associated with tumor growth in pancreatic ductal adenocarcinoma (PDAC). Knockdown of SF3B1 significantly retarded cell proliferation and tumor growth in a cell line (Panc05.04) with the SF3B1K700E mutation. However, SF3B1 knockdown had no notable effect on cell proliferation in two cell lines (BxPC3 and AsPC1) carrying wild-type SF3B1. Ectopic expression of SF3B1K700E but not SF3B1WT in SF3B1-knockout Panc05.04 cells largely restored the inhibitory role induced by SF3B1 knockdown. Introduction of the SF3B1K700E mutation in BxPC3 and AsPC1 cells also boosted cell proliferation. Gene set enrichment analysis demonstrated a close correlation between SF3B1 mutation and aerobic glycolysis. Functional analyses showed that the SF3B1K700E mutation promoted tumor glycolysis, as evidenced by glucose consumption, lactate release, and extracellular acidification rate. Mechanistically, the SF3B1 mutation promoted the aberrant splicing of PPP2R5A and led to the activation of the glycolytic regulator c-Myc via post-translational regulation. Pharmacological activation of PP2A with FTY-720 markedly compromised the growth advantage induced by the SF3B1K700E mutation in vitro and in vivo. Taken together, our data suggest a novel function for SF3B1 mutation in the Warburg effect, and this finding may offer a potential therapeutic strategy against PDAC with the SF3B1K700E mutation.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Línea Celular Tumoral , Glucólisis/genética , Humanos , Mutación/genética , Neoplasias Pancreáticas/patología , Fosfoproteínas/metabolismo , Empalme del ARN , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo
16.
Cancer Lett ; 508: 47-58, 2021 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-33766751

RESUMEN

Perineural invasion (PNI) is a common feature of pancreatic ductal adenocarcinoma (PDAC) and is one of the important causes of local recurrence in resected pancreatic cancer, but the molecular mechanism remains largely unexplored. Here, we used immunohistochemistry staining to determine the expression of CD74. Then the in vivo PNI model, in vitro neuroplasticity assay, cell proliferation assay, wound healing and Transwell-based invasion assay were performed to examine the function of CD74 in pancreatic cancer cell lines. ChIP assay and Luciferase reporter assay were used to illustrate the mechanism underlying CD74 induced GDNF expression. We confirmed that the expression level of CD74 was an independent predictor of PNI and poor prognosis for PDAC. Moreover, we found that upregulation of CD74 on PDAC enhanced its migration and invasive capabilities and potentiated the secretion of neurotrophic factor GDNF to promote the neuroplasticity. Mechanistically, CD74 promoted GDNF production via the AKT/EGR-1/GDNF axis in PDAC. Taken together, our findings suggest a supportive role of CD74 in the PNI of PDAC, and deepen our understanding of how cancer cells promote neuroplasticity in the microenvironment of PDAC.


Asunto(s)
Antígenos CD/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Plasticidad Neuronal , Neuronas/patología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Sialiltransferasas/metabolismo , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Humanos , Invasividad Neoplásica , Neuronas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Microambiente Tumoral , Regulación hacia Arriba
17.
Oncogenesis ; 10(3): 22, 2021 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-33658487

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers, which lacks effective treatment strategies. There is an urgent need for the development of new strategies for PDAC therapy. The genetic and phenotypic heterogeneity of PDAC cancer cell populations poses further challenges in the clinical management of PDAC. In this study, we performed single-cell RNA sequencing to characterize PDAC tumors from KPC mice. Functional studies and clinical analysis showed that PDAC cluster 2 cells with highly Hsp90 expression is much more aggressive than the other clusters. Genetic and pharmacologic inhibition of Hsp90 impaired tumor cell growth both in vitro and in vivo. Further mechanistic study revealed that HSP90 inhibition disrupted the interaction between HSP90 and OPA1, leading to a reduction in mitochondrial cristae amount and mitochondrial energy production. Collectively, our study reveals that HSP90 might be a potential therapeutic target for PDAC.

18.
Nat Commun ; 12(1): 174, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33420030

RESUMEN

The immunosuppressive microenvironment that is shaped by hepatic metastatic pancreatic ductal adenocarcinoma (PDAC) is essential for tumor cell evasion of immune destruction. Neutrophils are important components of the metastatic tumor microenvironment and exhibit heterogeneity. However, the specific phenotypes, functions and regulatory mechanisms of neutrophils in PDAC liver metastases remain unknown. Here, we show that a subset of P2RX1-negative neutrophils accumulate in clinical and murine PDAC liver metastases. RNA sequencing of murine PDAC liver metastasis-infiltrated neutrophils show that P2RX1-deficient neutrophils express increased levels of immunosuppressive molecules, including PD-L1, and have enhanced mitochondrial metabolism. Mechanistically, the transcription factor Nrf2 is upregulated in P2RX1-deficient neutrophils and associated with PD-L1 expression and metabolic reprogramming. An anti-PD-1 neutralizing antibody is sufficient to compromise the immunosuppressive effects of P2RX1-deficient neutrophils on OVA-activated OT1 CD8+ T cells. Therefore, our study uncovers a mechanism by which metastatic PDAC tumors evade antitumor immunity by accumulating a subset of immunosuppressive P2RX1-negative neutrophils.


Asunto(s)
Inmunosupresores/farmacología , Neoplasias Hepáticas/inmunología , Neutrófilos/metabolismo , Neoplasias Pancreáticas/inmunología , Microambiente Tumoral/inmunología , Animales , Antígeno B7-H1/metabolismo , Linfocitos T CD8-positivos/inmunología , Carcinoma Ductal Pancreático/inmunología , Carcinoma Ductal Pancreático/patología , Modelos Animales de Enfermedad , Neoplasias Hepáticas/patología , Masculino , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Páncreas/inmunología , Páncreas/patología , Neoplasias Pancreáticas/patología , Receptores Purinérgicos P2X/genética , Receptores Purinérgicos P2X/inmunología , Receptores Purinérgicos P2X/metabolismo
19.
Genome Biol ; 22(1): 4, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33397441

RESUMEN

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers due to its high metastasis rate in the liver. However, little is known about the molecular features of hepatic metastases due to difficulty in obtaining fresh tissues and low tumor cellularity. RESULTS: We conduct exome sequencing and RNA sequencing for synchronous surgically resected primary tumors and the paired hepatic metastases from 17 hepatic oligometastatic pancreatic ductal adenocarcinoma and validate our findings in specimens from 35 of such cases. The comprehensive analysis of somatic mutations, copy number alterations, and gene expressions show high similarity between primary tumors and hepatic metastases. However, hepatic metastases also show unique characteristics, such as a higher degree of 3p21.1 loss, stronger abilities of proliferation, downregulation of epithelial to mesenchymal transition activity, and metabolic rewiring. More interesting, altered tumor microenvironments are observed in hepatic metastases, especially a higher proportion of tumor infiltrating M2 macrophage and upregulation of complement cascade. Further experiments demonstrate that expression of C1q increases in primary tumors and hepatic metastases, C1q is mainly produced by M2 macrophage, and C1q promotes migration and invasion of PDAC cells. CONCLUSION: Taken together, we find potential factors that contribute to different stages of PDAC metastasis. Our study broadens the understanding of molecular mechanisms driving PDAC metastasis.


Asunto(s)
Carcinoma Ductal Pancreático/genética , Complemento C1q/genética , Genómica , Neoplasias Hepáticas/genética , Neoplasias Pancreáticas/genética , Transcriptoma , Adenocarcinoma/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Complemento C1q/metabolismo , Transición Epitelial-Mesenquimal , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Masculino , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Microambiente Tumoral , Secuenciación del Exoma , Neoplasias Pancreáticas
20.
Oncol Lett ; 20(4): 5, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32774479

RESUMEN

Perineural invasion (PNI) is a prominent characteristic of pancreatic ductal adenocarcinoma (PDAC). PNI is associated with tumor progression, local recurrence and neuropathic pain; therefore, the identification of biomarkers associated with PNI may be beneficial in assessing the prognosis for patients with PDAC. Using an in vivo model of PNI, five pancreatic cancer cell lines (PANC-1, CFPAC-1, CAPAN-2, SW1990 and ASPC-1) were divided into two groups: High-(comprising PANC-1, CFPAC-1 and CAPAN-2) and low PNI (comprising SW1990 and ASPC-1). Differentially expressed genes (DEGs) between the two groups were identified using the GSE26088 dataset, and were regarded as PNI-associated genes. A total of 445 DEGs associated with PNI (fold change >1.5 or <0.66; P<0.05) were identified, which included 176 up- and 269 downregulated genes. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis and function annotation were performed, and the NetworkAnalyst database was used for protein-protein interaction network analysis to identify hub genes. A total of 20 hub genes (gene degree, ≥6) were identified. PNI was associated with the function 'chemokine signaling pathway'. The DEGs and hub genes were validated using the GSE102238 dataset and clinical tissue microarrays. Fibroblast growth factor 2 (FGF2) and catenin α 2 were demonstrated to be associated with PNI using the GSE102238 dataset. Furthermore, clinical tissue microarray analysis demonstrated that FGF2 was associated with PNI and poor prognosis. The present study provided a potential method for the reliable identification of PNI-associated genes, although further investigation is required to validate these results.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA