Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Am J Cancer Res ; 14(2): 796-808, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38455414

RESUMEN

The expression level of PD-L1 does not accurately predict the prognosis of advanced colorectal cancer (CRC) patients, but it still reflects the tumor microenvironment to some extent. By stratifying PD-L1 status, gene subtypes in PD-L1 positivity-related pathological pathways were analyzed for their relationship to MSI or TMB to provide more individualized treatment options for CRCs. A total of 752 advanced CRCs were included, and their genomic variance was measured by a targeted next generation sequencing panel in this study. MSI and TMB were both measured by NGS, while PD-L1 expression level was measured using the PD-L1 colon 22C3 pharmDx kit. We found RTK/RAS pathway was positively related to high PD-L1 expression, with BRAF V600E and most KRAS mutations (G12 and G13) subtypes showing a significant correlation. Conversely, the Wnt and p53 pathways were negatively related to high PD-L1 expression, with APC C-terminal alterations and other non-inactivation mutations in TP53 making a primary contribution with significant statistical significance. Major subtypes showing a significantly higher proportion of TMB-H or MSI-H were irrespective of PD-L1 status. These findings demonstrate pathological pathways associated with high PD-L1 expression, suggesting that pathway-induced oncogenic constructive PD-L1 upregulation may be the reason for the corresponding patients' primary resistance to immune checkpoint inhibitors (ICIs), rather than a lack of pre-existing immune responses.

2.
Respir Res ; 25(1): 40, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38238740

RESUMEN

BACKGROUND: Although EGFR-TKI resistance mechanisms in non-small cell lung cancer (NSCLC) have been extensively studied, certain patient subgroups remain with unclear mechanisms. This retrospective study analysed mutation data of NSCLC patients with EGFR-sensitive mutations and high programmed death-ligand 1 (PD-L1) expression or high TMB to identify primary resistance mechanisms. METHODS: Hybrid capture-based next-generation sequencing (NGS) was used to analyse mutations in 639 genes in tumor tissues and blood samples from 339 NSCLC patients. PD-L1 immunohistochemical staining was also performed on the same cell blocks. Molecular and pathway profiles were compared among patient subgroups. RESULTS: TMB was significantly higher in lung cancer patients with EGFR-sensitive mutations and high PD-L1 expression. Compared with the high-expression PD-L1 or high TMB and low-expression or TMB groups, the top 10 genes exhibited differences in both gene types and mutation rates. Pathway analysis revealed a significant mutations of the PI3K signaling pathway in the EGFR-sensitive mutation group with high PD-L1 expression (38% versus 12%, p < 0.001) and high TMB group (31% versus 13%, p < 0.05). Notably, PIK3CA and PTEN mutations emerged as the most important differentially mutated genes within the PI3K signaling pathway. CONCLUSIONS: Our findings reveal that the presence of PI3K signaling pathway mutations may be responsible for inducing primary resistance to EGFR-TKIs in NSCLC patients with EGFR-sensitive mutations along with high PD-L1 expression or high TMB. This finding is of great significance in guiding subsequent precision treatments in NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Antígeno B7-H1 , Estudios Retrospectivos , Fosfatidilinositol 3-Quinasas/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Mutación/genética , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico
3.
Cancer Res Treat ; 55(4): 1270-1280, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37114476

RESUMEN

PURPOSE: Loss-of-function mutations in the adenomatous polyposis coli (APC) gene are common in metastatic colorectal cancer (mCRC). However, the characteristic of APC specific mutations in mCRC is poorly understood. Here, we explored the clinical and molecular characteristics of N-terminal and C-terminal side APC mutations in Chinese patients with mCRC. MATERIALS AND METHODS: Hybrid capture-based next-generation sequencing was performed on tumor tissues from 275 mCRC pati-ents to detect mutations in 639 tumor-associated genes. The prognostic value and gene-pathway difference between APC specific mutations in mCRC patients were analyzed. RESULTS: APC mutations were highly clustered, accounting for 73% of all mCRC patients, and most of them were truncating mutations. The tumor mutation burden of the N-terminal side APC mutations group (n=76) was significantly lower than that of the C-terminal side group (n=123) (p < 0.001), further confirmed by the public database. Survival analysis showed that mCRC patients with N-terminus side APC mutations had longer overall survival than C-terminus side. Tumor gene pathway analysis showed that gene mutations in the RTK/RAS, Wnt and transforming growth factor ß signaling pathways of the C-terminal group were significantly higher than those of the N-terminal group (p < 0.05). Additionally, KRAS, AMER1, TGFBR2, and ARID1A driver mutations were more common in patients with C-terminal side APC mutations. CONCLUSION: APC specific mutations have potential function as mCRC prognostic biomarkers. There are obvious differences in the gene mutation patterns between the C-terminus and N-terminus APC mutations group, which may have certain guiding significance for the subsequent precise treatment of mCRC.


Asunto(s)
Poliposis Adenomatosa del Colon , Neoplasias del Colon , Neoplasias Colorrectales , Neoplasias del Recto , Humanos , Pronóstico , Neoplasias Colorrectales/patología , Mutación
4.
Sci Rep ; 12(1): 22201, 2022 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-36564433

RESUMEN

Metastasis, a major challenge during the treatment of lung cancer, causes deterioration in patient health outcomes. Thus, to address this problem, this study aimed to explore the role and contribution of Cholesterol 25-Hydroxylase (CH25H) as a potential diagnostic and prognostic marker in lung cancer. Online public databases were used to analyze the expression level, prognostic value, gene-pathway enrichment, and immune infiltration of CH25H in lung cancer patients. The Real-Time Quantitative Reverse Transcription PCR (qRT-PCR) was used to analyze and detect the CH25H expression levels in leukocytes from lung cancer patients. The expression level of CH25H was significantly reduced in lung adenocarcinoma (LUAD), which is associated with a higher disease stage, but not in lung squamous cell carcinoma (LUSC). Kaplan-Meier survival analysis indicated that LUAD patients with low CH25H expression had a worse prognosis. Mechanistically, our results showed that in LUAD, CH25H may be a regulatory factor affecting the immune cell infiltration level, and the resultant tumor development. Experimental data showed that low expression of CH25H in leukocytes was significantly associated with LUAD metastasis (P < 0.01). Our study suggests that CH25H may function as a prognostic and risk stratification biomarker for LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Pronóstico , Perfilación de la Expresión Génica , Adenocarcinoma del Pulmón/diagnóstico , Adenocarcinoma del Pulmón/genética , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Leucocitos/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo
5.
Chemosphere ; 239: 124822, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31726527

RESUMEN

Arsenic (As) methylation is regarded as an efficient strategy for As contamination remediation by As volatilization. However, most microorganisms display low As volatilization efficiency, which is possibly linked to As efflux transporters competing for cytoplasmic As(III) as a substrate. Here, we developed two types of As biosensors in Escherichia coli to compare the As efflux rate of three efflux transporters and to further investigate the correlation between As efflux rates and As volatilization. The engineered As-sensitive E. coli AW3110 expressing arsBRP, acr3RP or arsBEC displayed a higher As resistance compared to the control. The fluorescence intensity was in a linear correlation in the range of 0-2.0 µmol/L of As(III). The intracellular As(III) concentration was negatively related to As efflux activity of As efflux transporter, which was consistent with the As resistance assays. Moreover, arsM derived from R. palustris CGA009 was subsequently introduced to construct an E. coli AW3110 co-expressing arsB/acr3 and arsM, which exhibited higher As(III) resistance, lower fluorescence intensity and intracellular As concentration compared to the engineered E. coli AW3110 expressing only arsB/acr3. The As volatilization efficiency was negatively related to As efflux activity of efflux transporters, the recombinants without arsB/acr3 displayed the highest rate of As volatilization. This study provided new insights into parameters affecting As volatilization with As efflux being the main limiting factor for As methylation and subsequent volatilization in many microorganisms.


Asunto(s)
Arsénico/metabolismo , Arsenitos/metabolismo , Escherichia coli/metabolismo , Bombas Iónicas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Técnicas Biosensibles , Catálisis , Escherichia coli/genética , Bombas Iónicas/genética , Proteínas de Transporte de Membrana/genética , Metilación , Volatilización
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...