Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 226: 1192-1202, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36442556

RESUMEN

Acute kidney injury (AKI) is a pathological process with high morbidity, and drug resistance is easy to occur due to untargeted drug therapy. Curcumin can repair acute kidney injury. The expression of the CD44 receptor in renal tubular epithelial cells is abnormally elevated during AKI, and hyaluronic acid (HA) has the ability to bind specifically to the CD44 receptor. In this study, we developed a hyaluronic acid-coated liposome (HALP) nanocomplexes that targeted renal epithelial cells and its effect of relieving AKI was investigated. HALP was formed by self-assembly through the electrostatic interaction of curcumin-loaded cationic liposomes (LP) with hyaluronic acid and responds to the release of curcumin in the acidic microenvironment of lesions to treat AKI. HALP had good stability and biocompatibility. The in vitro results showed that compared to LP, HALP exhibited higher antioxidant, anti-inflammatory, and anti-apoptotic capacities. The AKI model suggested that HALP could not only target and accumulate in the injured kidney but also had an excellent ability to reduce the inflammatory response, which decreased tubular necrosis and restored kidney function.


Asunto(s)
Lesión Renal Aguda , Curcumina , Humanos , Curcumina/farmacología , Curcumina/uso terapéutico , Ácido Hialurónico/uso terapéutico , Liposomas/uso terapéutico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/metabolismo
2.
Nat Commun ; 11(1): 3823, 2020 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-32732934

RESUMEN

An accurate extraction of physiological and physical signals from human skin is crucial for health monitoring, disease prevention, and treatment. Recent advances in wearable bioelectronics directly embedded to the epidermal surface are a promising solution for future epidermal sensing. However, the existing wearable bioelectronics are susceptible to motion artifacts as they lack proper adhesion and conformal interfacing with the skin during motion. Here, we present ultra-conformal, customizable, and deformable drawn-on-skin electronics, which is robust to motion due to strong adhesion and ultra-conformality of the electronic inks drawn directly on skin. Electronic inks, including conductors, semiconductors, and dielectrics, are drawn on-demand in a freeform manner to develop devices, such as transistors, strain sensors, temperature sensors, heaters, skin hydration sensors, and electrophysiological sensors. Electrophysiological signal monitoring during motion shows drawn-on-skin electronics' immunity to motion artifacts. Additionally, electrical stimulation based on drawn-on-skin electronics demonstrates accelerated healing of skin wounds.


Asunto(s)
Monitoreo Fisiológico/instrumentación , Sistemas de Atención de Punto , Piel/fisiopatología , Dispositivos Electrónicos Vestibles , Artefactos , Estimulación Eléctrica , Epidermis/fisiología , Humanos , Movimiento (Física) , Semiconductores , Auxiliares Sensoriales , Piel/lesiones , Cicatrización de Heridas
3.
Sci Adv ; 5(10): eaax4961, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31646177

RESUMEN

Artificial synaptic devices that can be stretched similar to those appearing in soft-bodied animals, such as earthworms, could be seamlessly integrated onto soft machines toward enabled neurological functions. Here, we report a stretchable synaptic transistor fully based on elastomeric electronic materials, which exhibits a full set of synaptic characteristics. These characteristics retained even the rubbery synapse that is stretched by 50%. By implementing stretchable synaptic transistor with mechanoreceptor in an array format, we developed a deformable sensory skin, where the mechanoreceptors interface the external stimulations and generate presynaptic pulses and then the synaptic transistors render postsynaptic potentials. Furthermore, we demonstrated a soft adaptive neurorobot that is able to perform adaptive locomotion based on robotic memory in a programmable manner upon physically tapping the skin. Our rubbery synaptic transistor and neurologically integrated devices pave the way toward enabled neurological functions in soft machines and other applications.

4.
Phys Chem Chem Phys ; 15(13): 4566-72, 2013 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-23420471

RESUMEN

Charge transport is one of the five main steps in the operation of organic photovoltaics, but achieving balanced hole and electron transport with high mobility has been challenging in devices. Here, we report improved charge transport in organic photovoltaics via incorporation of nanostructured inorganic electron transport materials into the active layers of devices. Co-depositing TiO2 nanowires with the organic active layer solution embeds the nanowires directly within active layers of the solar cell. The ability of these nanowires to transport electrons is compared with neat P3HT:PCBM active layers and also devices containing TiO2 nanotube aggregates. Incorporation of TiO2 nanowires yields a six-fold increase in the electron mobility relative to unmodified devices, leading to a 19% improvement in the power conversion efficiency. Lower energetic disorder of the film and more balanced charge transport are also observed upon incorporating TiO2 nanowires. These advantageous effects correlate with the TiO2 nanowire length.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...