RESUMEN
3D printing of a flexible polyurethane elastomer is highly demandable for its potential to revolutionize industries ranging from footwear to soft robotics thanks to its exceptional design flexibility and elasticity performance. Nevertheless, conventional methods like fused deposition modeling (FDM) and vat photopolymerization (VPP) polyurethane 3D printing typically limit material options to thermoplastic or photocurable polyurethanes. In this research, a water-borne polyurethane ink was synthesized for direct ink writing (DIW) 3D printing through the incorporation of cellulose nanofibrils (CNFs), enabling direct printing of complex, monolithic elastomeric structures at room temperature that can maintain the designed structure. Additionally, a solvent-induced fast solidification (SIFS) method was introduced to facilitate room-temperature curing and enhance mechanical properties. The 3D-printed WPU structures demonstrated strong interfacial adhesion, exhibiting high ultimate tensile strength of up to 22 MPa and an elongation at break of 951%. The 3D-printed WPU structures also demonstrated outstanding resilience and durability, capable of enduring more than 100 cycles of compression and tension as well as withstanding vehicle crushing and heavy lifting. This method also shows suitability for 3D printing complex structures such as a vase and an octopus.
RESUMEN
OBJECTIVES: To observe effects of electroacupuncture (EA) on the activation of astrocytes and high mobility group protein B1(HMGB1)/Toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88) signaling pathway, as well as related cytokines in rats with cervical spondylosis radiculopathy(CSR), so as to explore the analgesic mechanism of EA in treating CSR. METHODS: Twenty-four male SD rats were randomly divided into blank, sham surgery, model, and EA groups, with 6 rats in each group. CSR rat model was established by using cervical spinal cord canal puncture method. On the 7th day after successful modeling, EA was applied to rats in the EA group at bilateral "Hegu"(LI4) and "Taichong"(LR3) for 20 minutes(1.5 Hz, 1 mA), once daily for 7 consecutive days. Before and after intervention, gait impairment scores and mechanical pain thresholds were assessed. HE staining was used to observe pathological changes in spinal cord tissue. Western blot was used to detect the expression of HMGB1, TLR4, MyD88, and glial fibrillary acidic protein (GFAP) in the spinal cord. ELISA was used to measure the contents of CXC chemokine ligand 1 (CXCL1), chemokine ligand 2 (CCL2), tumor necrosis factor (TNF)-α, and interleukin (IL)-1ß in spinal cord. Immunofluorescence staining was used to observe GFAP protein positive expression in spinal cord tissue. RESULTS: There was no significant difference of all indexes between the blank group and the sham surgery group. Compared with the sham surgery group, mechanical pain threshold of rats in the model group was decreased(P<0.01), while gait impairment score, the contents of CXCL1, CCL2, TNF-α, IL-1ß, protein expressions of HMGB1, TLR4, MyD88 and GFAP, and positive expression of GFAP in spinal cord tissue were increased (P<0.01)ï¼HE staining indicated severe overall morphological damage in the spinal cord of rats in the model group, with significant shrinkage of gray matter neurons, reduced number of Nissl bodies, and increased inflammatory cell infiltration. Compared with the model group, mechanical pain threshold in the EA group was increased (P<0.01), while gait impairment score, the contents of CXCL1, CCL2, TNF-α, IL-1ß, protein expressions of HMGB1, TLR4, MyD88 and GFAP, and positive expression of GFAP in spinal cord were reduced (P<0.01)ï¼HE staining showed more intact neuronal cell bodies, increased number of Nissl bodies, and reduced shrinkage of gray matter neurons, inflammatory cell infiltration, and microvascular dilation in the spinal cord of rats in the EA group. CONCLUSIONS: EA can effectively alleviate pain in CSR rats, which is possibly by inhibiting astrocyte activation, HMGB1/TLR4/MyD88 signaling pathway, and reducing the release of related inflammatory cytokines, thus alleviating central sensitization in spinal segments.
Asunto(s)
Astrocitos , Electroacupuntura , Proteína HMGB1 , Factor 88 de Diferenciación Mieloide , Radiculopatía , Ratas Sprague-Dawley , Transducción de Señal , Espondilosis , Receptor Toll-Like 4 , Animales , Ratas , Masculino , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Proteína HMGB1/metabolismo , Proteína HMGB1/genética , Radiculopatía/terapia , Radiculopatía/metabolismo , Radiculopatía/fisiopatología , Radiculopatía/genética , Humanos , Astrocitos/metabolismo , Espondilosis/terapia , Espondilosis/metabolismo , Espondilosis/genética , Puntos de AcupunturaRESUMEN
Wound management has always been a challenge in the clinical treatment of diabetes. In this study, glucose oxidase (GOx) is grafted onto natural pullulan polysaccharides, and oxidization is carried out to form a self-healing hydrogel using carboxymethyl chitosan by means of reversible Schiff base covalent bonding. The smart-response drug release properties of this natural self-healing hydrogel are demonstrated in diabetic wounds by taking advantage of two key factors, namely the pH-responsive nature of Schiff base bonding and the fact that GOx reduces the pH in diabetic wounds. To further enhance the biological functions of the hydrogel dressing, exosomes (Exos) are introduced into the hydrogel system. The GOx present in the hydrogel system improves the high-glucose microenvironment of diabetic wounds, releasing H2O2 to impart antimicrobial effects, and ensuring that the hydrogel realizes a smart-response function. The carboxymethyl chitosan component used to construct the hydrogel plays an effective antibacterial role. Moreover, the Exos loaded into the hydrogel effectively promotes neovascularization of the wound. The Exos also regulates macrophage polarization and reduces the levels of persistent inflammation in diabetic wounds. These results suggest that this smart responsive, multifunctional, and self-healing hydrogel dressing is ideal for the management of diabetic wounds.
RESUMEN
Chinese Baijiu is a famous fermented alcoholic beverage in China. Interactions between key microorganisms, i.e., Saccharomyces cerevisiae and Lactiplantibacillus plantarum, have recently been reported at specific temperatures. However, empirical evidence of their interactions at various temperatures during fermentation is lacking. The results of this study demonstrated that S. cerevisiae significantly suppressed the viability and lactic acid yield of L. plantarum when they were cocultured above 15 °C. On the other hand, L. plantarum had no pronounced effect on the growth and ethanol yield of S. cerevisiae in coculture systems. S. cerevisiae was the main reducing sugar consumer. Inhibition of lactic acid production was also observed when elevated cell density of L. plantarum was introduced into the coculture system. A proteomic analysis indicated that the enzymes involved in glycolysis, lactate dehydrogenase, and proteins related to phosphoribosyl diphosphate, ribosome, and aminoacyl-tRNA biosynthesis in L. plantarum were less abundant in the coculture system. Collectively, our data demonstrated the antagonistic effect of S. cerevisiae on L. plantarum and provided insights for effective process management in light-flavor Baijiu fermentation.
RESUMEN
Indole and skatole (3-methylindole, C9H9N) are common nitrogen-containing heterocyclic pollutants found in waste, wastewater treatment plants, and public restrooms and are the most notorious compounds in animal feces. Biodegradation was considered a feasible method for the removal of indole and skatole, but a comprehensive understanding of the metabolic pathways under both aerobic and anaerobic conditions was lacking, and the functional genes responsible for skatole biodegradation remained a mystery. Through metagenomic and gene cluster functional analysis, Acinetobacter piscicola p38 (NCBI: CP167896), genes 1650 (styrene monooxygenase: ACDW34_08180), and 1687 (styrene monooxygenase: ACDW34_08350) were identified as having the potential to degrade indole and skatole. The heterologous expression results demonstrate that the genes 1650 and 1651 (flavin reductase: ACDW34_08185), when combined, are capable of degrading indole, while the genes 1687 and 1688 (flavin reductase: ACDW34_08355), in combination, can degrade indole as well as skatole. These reactions necessitate the involvement of flavin reductase and NAD(P)H to catalyze the oxygenation process. This work aimed to provide new experimental evidence for the biodegradation of indole and skatole. This study offered new insights into our understanding of skatole degradation. The Acinetobacter_piscicola p38 strain provided an effective bacterial resource for the bioremediation of fecal indole and skatole.
RESUMEN
Size-resolved gas-particle partitioning of semi-volatile organic compounds (SVOCs) can affect their environmental behaviors and health effects, which has not been widely studied in comparing with the gas-total suspended particle partitioning. Herein, the size-resolved gas-particle partitioning quotient (KPi) of polycyclic aromatic hydrocarbons (PAHs) in a large temperature range (-20.6 â â¼ 29.4 â) was firstly comprehensively studied. The log KPi values of PAHs related to fine particles were significantly higher than those related to coarse particles. When the logarithm of subcooled liquid-vapor pressure (log PL0) ∈ [-7, -1), the regression slopes of log KPi vs log PL0 related to the particle size > 1.0 µm were shallower than those with the particle size range of 0.10-1.0 µm, which indicated the influence of particle size on KPi. Among the three previous prediction equations of gas-particle partitioning quotient, the empirical equation based on the ambient temperature matched better with the measured log KPi. Therefore, a new prediction equation including ambient temperature and particle size as the two major parameters was established. For most particle size ranges, the new equation showed better prediction performance than the three previous equations. In summary, this study provided new insights for the size-resolved gas-particle partitioning mechanism and quotient.
RESUMEN
Skeletal muscle satellite cells (SMSCs), a type of myogenic stem cell, play a pivotal role in postnatal muscle regeneration and repair in animals. Circular RNAs (circRNAs) are a distinct class of non-coding RNA molecules capable of regulating muscle development by modulating gene expression, acting as microRNAs, or serving as protein decoys. In this study, we identified circ_14820, an exonic transcript derived from adenosine triphosphatase family protein 2 (ATAD2), through initial RNA-Seq analysis. Importantly, overexpression of circ_14820 markedly enhanced the proliferation of goat SMSCs while concomitantly suppressing their differentiation. Moreover, circ_14820 exhibited predominant localization in the cytoplasm of SMSCs. Subsequent small RNA and mRNA sequencing of circ_14820-overexpressing SMSCs systematically elucidated the molecular regulatory mechanisms associated with circ_14820. Our preliminary findings suggest that the circ_14820-miR-206-CCND2 regulatory axis may govern the development of goat SMSCs. These discoveries contribute to a deeper understanding of circRNA-mediated mechanisms in regulating skeletal muscle development, thereby advancing our knowledge of muscle biology.
Asunto(s)
Diferenciación Celular , Proliferación Celular , Cabras , ARN Circular , Células Satélite del Músculo Esquelético , Animales , Cabras/genética , Células Satélite del Músculo Esquelético/metabolismo , Células Satélite del Músculo Esquelético/citología , ARN Circular/genética , ARN Circular/metabolismo , Diferenciación Celular/genética , Proliferación Celular/genética , MicroARNs/genética , MicroARNs/metabolismo , Desarrollo de Músculos/genética , Células Cultivadas , Ciclina D2/genética , Ciclina D2/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/citologíaRESUMEN
Deoxyribonucleotide (DNA) is uniquely programmable and biocompatible, and exhibits unique appeal as a biomaterial as it can be precisely designed and programmed to construct arbitrary shapes. DNA hydrogels are polymer networks comprising cross-linked DNA strands. As DNA hydrogels present programmability, biocompatibility, and stimulus responsiveness, they are extensively explored in the field of biomedicine. In this study, we provide an overview of recent advancements in DNA hydrogel technology. We outline the different design philosophies and methods of DNA hydrogel preparation, discuss its special physicochemical characteristics, and highlight the various uses of DNA hydrogels in biomedical domains, such as drug delivery, biosensing, tissue engineering, and cell culture. Finally, we discuss the current difficulties facing DNA hydrogels and their potential future development.
Asunto(s)
Materiales Biocompatibles , ADN , Hidrogeles , Ingeniería de Tejidos , Hidrogeles/química , ADN/química , Humanos , Ingeniería de Tejidos/métodos , Materiales Biocompatibles/química , Animales , Sistemas de Liberación de Medicamentos/métodos , Ingeniería Biomédica/métodos , Técnicas Biosensibles/métodos , Técnicas de Cultivo de Célula/métodosRESUMEN
Post-translational modifications play crucial roles in regulating protein functions and stabilities. PTEN is a critical tumor suppressor involved in regulating cellular proliferation, survival, and migration processes. However, dysregulation of PTEN is common in various human cancers. PTEN stability and activation/suppression have been extensively studied in the context of tumorigenesis through inhibition of the PI3K/AKT signaling pathway. PTEN undergoes various post-translational modifications, primarily including phosphorylation, acetylation, ubiquitination, SUMOylation, neddylation, and oxidation, which finely tune its activity and stability. Generally, phosphorylation modulates PTEN activity through its lipid phosphatase function, leading to altered power of the signaling pathways. Acetylation influences PTEN protein stability and degradation rate. SUMOylation has been implicated in PTEN localization and interactions with other proteins, affecting its overall function. Neddylation, as a novel modification of PTEN, is a key regulatory mechanism in the loss of tumor suppressor function of PTEN. Although current therapeutic approaches focus primarily on inhibiting PI3 kinase, understanding the post-translational modifications of PTEN could help provide new therapeutic strategies that can restore PTEN's role in PIP3-dependent tumors. The present review summarizes the major recent developments in the regulation of PTEN protein level and activity. We expect that these insights will contribute to better understanding of this critical tumor suppressor and its potential implications for cancer therapy in the future.
RESUMEN
BACKGROUND: A stent with characteristics of a hybrid design may have advantages in improving the patency of symptomatic iliofemoral vein obstruction. This study assessed the safety and effectiveness of the V-Mixtent Venous Stent in treating symptomatic iliofemoral outflow obstruction. METHODS: Eligible patients had a Clinical-Etiologic-Anatomic-Physiologic (CEAP) C classification of ≥ 3 or a Venous Clinical Severity Score (VCSS) pain score of ≥ 2. The primary safety endpoint was the rate of major adverse events within 30 days. The primary effectiveness endpoint was the 12-month primary patency rate. Secondary endpoints included changes in VCSS from baseline to 6 and 12 months, alterations in CEAP C classification, Chronic Venous Disease Quality of Life Questionnaire (CIVIQ-14) scores at 12 months, and stent durability measures. RESULTS: Between December 2020 and November 2021, 171 patients were enrolled across 15 institutions. A total of 185 endovenous stents were placed, with 91.81% of subjects receiving one stent and 8.19% receiving 2 stents. Within 30 days, only two major adverse events occurred (1.17%; 95% confidence interval [CI], 0.14-4.16%), below the literature-defined performance goal of 11% (P < .001). The 12-month primary patency rate (91.36%; 95% CI, 85.93-95.19%; P < .001) exceeded the literature-defined performance goal. VCSS changes from baseline demonstrated clinical improvement at 6 months (- 4.30 ± 3.66) and 12 months (- 4.98 ± 3.67) (P < .001). Significant reduction in symptoms, as measured by CEAP C classification and CIVIQ-14, was observed from pre-procedure to 12 months (P < .001). CONCLUSIONS: The 12-month outcomes confirm the safety and effectiveness of the V-Mixtent Venous Stent in managing symptomatic iliofemoral venous outflow obstruction, including clinical symptom improvement compared to before treatment.
Asunto(s)
Vena Femoral , Vena Ilíaca , Stents , Humanos , Masculino , Femenino , Persona de Mediana Edad , Estudios Prospectivos , Vena Femoral/cirugía , Vena Ilíaca/cirugía , Resultado del Tratamiento , Adulto , Anciano , Calidad de VidaRESUMEN
BACKGROUND AND AIMS: Thromboangiitis obliterans (TAO), also known as Buerger's disease, is a rare vasculitis. Observational epidemiology studies have suggested a relationship between the gut microbiota and TAO. However, due to confounding factors and reverse causality, the causal relationship remains unclear. Based on the assumption of their association, this study sought specific gut microbiota causally linked to TAO. METHODS: The case-control study was conducted at the Xiangya Hospital of Central South University from November 2022 to January 2023 including twelve TAO patients and nine healthy controls. We conducted a Mendelian randomization (MR) study using summary statistics from a genome-wide association study (GWAS) of gut microbiota and TAO. Considering the scale and accessibility of the data, the MiBioGen consortium served as the exposure, whereas the FinnGen consortium GWAS study served as the outcome. Finally, we compared the results of the MR with those of the case-control studies. RESULTS: The inverse variance weighted (IVW) (OR = 0.119, 95% CI: 0.021-0.688, p = 0.017) and maximum likelihood (ML) (OR = 0.121, 95% CI: 0.020-0.742, p = 0.022) estimates suggest that Ruminiclostridium 5 has a suggestive protective effect on TAO while the IVW (OR = 5.383, 95% CI: 1.128-25.693, p = 0.035) and ML (OR = 5.658, 95% CI: 1.142-28.021, p = 0.034) estimates suggest that Eubacterium (xylanophilum group) has a suggestive risk effect on TAO, and the ML (OR = 0.055, 95% CI: 0.004-0.755, p = 0.030) estimates suggest that Lachnospira has a suggestive protective effect on TAO. No significant heterogeneity of instrumental variables or horizontal pleiotropy was found. The results of the case-control study showed that the TAO had a lower relative abundance of Ruminiclostridium 5 (p = 0.015) and Lachnospira (p = 0.048), and a higher relative abundance of Eubacterium (xylanophilum group) (p = 0.029) than the healthy controls. These results were consistent with the MR analysis. CONCLUSIONS: Our study demonstrates that Ruminiclostridium 5, Lachnospira, and Eubacterium (xylanophilum group) are causally related to TAO, suggesting their potential significance for the prevention and treatment of TAO.
RESUMEN
MAIN CONCLUSION: The SiMBR genes in foxtail millet were identified and studied. Heterologous expression of SiMBR2 in Arabidopsis can improve plant tolerance to drought stress by decreasing the level of reactive oxygen species. Foxtail millet (Setaria italica L.), a C4 crop recognized for its exceptional resistance to drought stress, presents an opportunity to improve the genetic resilience of other crops by examining its unique stress response genes and understanding the underlying molecular mechanisms of drought tolerance. In our previous study, we identified several genes linked to drought stress by transcriptome analysis, including SiMBR2 (Seita.7G226600), a member of the MED25 BINDING RING-H2 PROTEIN (MBR) gene family, which is related to protein ubiquitination. Here, we have identified ten SiMBR genes in foxtail millet and conducted analyses of their structural characteristics, chromosomal locations, cis-acting regulatory elements within their promoters, and predicted transcription patterns specific to various tissues or developmental stages using bioinformatic approaches. Further investigation of the stress response of SiMBR2 revealed that its transcription is induced by treatments with salicylic acid and gibberellic acid, as well as by salt and osmotic stresses, while exposure to high or low temperatures led to a decrease in its transcription levels. Heterologous expression of SiMBR2 in Arabidopsis thaliana enhanced the plant's tolerance to water deficit by reducing the accumulation of reactive oxygen species under drought stress. In summary, this study provides support for exploring the molecular mechanisms associated with drought resistance of SiMBR genes in foxtail millet and contributing to genetic improvement and molecular breeding in other crops.
Asunto(s)
Arabidopsis , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Setaria (Planta) , Estrés Fisiológico , Setaria (Planta)/genética , Setaria (Planta)/fisiología , Setaria (Planta)/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/fisiología , Estrés Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sequías , Plantas Modificadas Genéticamente , Familia de Multigenes , Regiones Promotoras Genéticas/genética , Especies Reactivas de Oxígeno/metabolismoRESUMEN
Lignocellulosic nanofibrils (LCNFs) isolation is recognized as an efficient strategy for maximizing biomass utilization. Nevertheless, achieving a 100% yield presents a formidable challenge. Here, an esterification strategy mediated by the equilibrium moisture in biomass is proposed for LCNFs preparation without the use of catalysts, resulting in a yield exceeding 100%. Different from anhydrous chemical thermomechanical pulp (CTMP0%), the presence of moisture (moisture content of 7 wt%, denoted as CTMP7%) introduces a notably distinct process for the pretreatment of CTMP, comprising the initial disintegration and the post-esterification steps. The maleic acid, generated through maleic anhydride (MA) hydrolysis, degrades the recalcitrant lignin-carbohydrate complex (LCC) structures, resulting in esterified CTMP7% (E-CTMP7%). The highly grafted esters compensate for the mass loss resulting from the partial removal of hydrolyzed lignin and hemicellulose, ensuring a high yield. Following microfluidization, favorable LCNF7% with a high yield (114.4 ± 3.0%) and a high charge content (1.74 ± 0.09 mmol g-1) can be easily produced, surpassing most previous records for LCNFs. Additionally, LCNF7% presented highly processability for filaments, films, and 3D honeycomb structures preparation. These findings provide valuable insights and guidance for achieving a high yield in the isolation of LCNFs from biomass through the mediation of equilibrium moisture.
RESUMEN
Compared to the particle-gas partition coefficients (KPG), the rain-gas (KRG) and snow-gas (KSG) partition coefficients are also essential in studying the environmental behavior and fate of chemicals in the atmosphere. While the temperature dependence for the KPG have been extensively studied, the study for KRG and KSG are still lacking. Adsorption coefficients between water surface-air (KIA) and snow surface-air (KJA), as well as partition coefficients between water-air (KWA) and octanol-air (KOA) are vital in calculating KRG and KSG. These four basic adsorption and partition coefficients are also temperature-dependent, given by the well-known two-parameters Antoine equation logKXY = AXY + BXY/T, where KXY is the adsorption or partition coefficients, AXY and BXY are Antoine parameters (XY stand for IA, JA, WA, and OA), and T is the temperature in Kelvin. In this study, the parameters AXY and BXY are calculated for 943 chemicals, and logKXY can be estimated at any ambient temperature for these chemicals using these Antoine parameters. The results are evaluated by comparing these data with published experimental and modeled data, and the results show reasonable accuracy. Based on these coefficients, temperature-dependence of logKRG and logKSG is studied. It is found that both logKRG and logKSG are linearly related to 1/T, and Antoine parameters for logKRG and logKSG are also estimated. Distributions of the 943 chemicals in the atmospheric phases (gas, particle, and rain/snow), are illustrated in a Chemical Space Map. The findings reveal that, at environmental temperatures and precipitation days, the dominant state for the majority of chemicals is the gaseous phase. All the AXY and BXY values for logKSG, logKRG, and basic adsorption and partition coefficients, both modeled by this study and collected from published work, are systematically organized into an accessible dataset for public utilization.
Asunto(s)
Lluvia , Nieve , Temperatura , Nieve/química , Lluvia/química , Adsorción , Gases/química , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/química , Atmósfera/química , Monitoreo del Ambiente/métodos , Agua/químicaRESUMEN
Hydrogen peroxide (H2O2) synthesis by electrochemical two-electron oxygen reduction has garnered increasing interest as a wide range of potential applications. Gas diffusion electrodes (GDEs) can effectively promote the H2O2 production efficiency by overcoming the oxygen mass transfer limitations but strongly influenced by the electrowetting process along the long-term operation. In this study, the effect of trans-electrode pressure (TEP) of GDE cathode on the electrowetting process was further elucidated. We controlled the TEP values of four types of GDEs: two Ni-based GDEs and two carbon cloth GDEs prepared by hot-pressing or brushing carbon black. SBA-15 was further used to regulate the microstructure of one Ni-based GDE. It was found that an optimal range of TEP occurred for all tested GDEs in terms of the max. concentration, the yield efficiency, the energy consumption, and the stability because TEP may change the triple-phase interface and influence the anti-electrowetting effect. The porosity of hot-pressed Ni GDE can maintain the TEP window and thus enhance the production of H2O2, likely via creating oxygen-containing functional groups and a bimodal pore structure on the electrode, revealed with several characterization techniques including SEM, CA, XPS, Raman spectra, CV and EIS. The porous Ni GDE presented an efficient and stable production of H2O2 for 10 cycles: yielding H2O2 at 4393.2-4602.2 mmol m-2 h-1 with current efficiencies of 94.2-98.7%. The best accumulated H2O2 concentration can reach up to 3.58 ωt% H2O2 at 10 h. The results provide an important reference for the industrial scaleup of electro-production of H2O2 with GDEs.
Asunto(s)
Electrodos , Peróxido de Hidrógeno , Peróxido de Hidrógeno/química , Presión , Oxidación-Reducción , Difusión , Técnicas Electroquímicas/métodos , Oxígeno/química , Gases/química , Porosidad , Níquel/químicaRESUMEN
Flap grafting is a common technique used to repair skin defects in orthopedics and plastic and reconstructive surgeries. However, oxidative stress injury caused by ischemia and ischemia-reperfusion injury at the distal end of the skin flap can cause flap necrosis. Curcumin is a natural compound with anti-inflammatory and antioxidant properties that tackle oxidative stress. However, its applicability is limited by its poor water solubility. Exosomes are membranous vesicles that can be loaded with hydrophobic drugs. They are widely studied in drug delivery applications and can be investigated to augment curcumin efficiency. In this study, a self-healing oxidized pullulan polysaccharide-carboxymethylated chitosan composite hydrogel was used as a curcumin-loaded exosome delivery system to evaluate its impact on the viability of skin flaps. The hydrogel exhibited good self-healing properties that allowed the continuous and stable release of drugs. It had anti-inflammatory and antioxidant properties that could reduce oxidative stress damage due to early ischemia and hypoxia of the skin flap in vitro. Moreover, this composite hydrogel attenuated inflammatory responses, promoted angiogenesis, and reduced the distal necrosis of the flap in vivo. Therefore, our hydrogel provides a novel strategy for skin flap graft protection with reduced necrosis and the potential for broad clinical applications.
Asunto(s)
Curcumina , Exosomas , Hidrogeles , Colgajos Quirúrgicos , Curcumina/farmacología , Curcumina/química , Hidrogeles/química , Hidrogeles/farmacología , Animales , Exosomas/metabolismo , Exosomas/efectos de los fármacos , Ratones , Quitosano/química , Quitosano/farmacología , Quitosano/análogos & derivados , Antioxidantes/farmacología , Antioxidantes/química , Estrés Oxidativo/efectos de los fármacos , Polisacáridos/química , Polisacáridos/farmacología , Masculino , Antiinflamatorios/farmacología , Antiinflamatorios/química , HumanosRESUMEN
Environmentally persistent free radicals (EPFRs) can pose exposure risks by inducing the generation of reactive oxygen species. As a new class of pollutants, EPFRs have been frequently detected in atmospheric particulate matters. In this study, the seasonal variations and sources of EPFRs in a severe cold region in Northeastern China were comprehensively investigated, especially for the high pollution events. The geomean concentration of EPFRs in the total suspended particle was 6.58 × 1013 spins/m3 and the mean level in winter was one order of magnitude higher than summer and autumn. The correlation network analysis showed that EPFRs had significantly positive correlation with carbon component, K+ and PAHs, indicating that EPFRs were primarily emitted from combustion and pyrolysis process. The source appointment by the Positive Matrix Factorization (PMF) model indicated that the dominant sources in the heating season were coal combustion (48.4%), vehicle emission (23.1%) and biomass burning (19.4%), while the top three sources in the non-heating season were others (41.4%), coal combustion (23.7%) and vehicle emissions (21.2%). It was found that the high EPFRs in cold season can be ascribed to the extensive use of fossil fuel for heating demand; while the high EPFRs occurred in early spring were caused by the large-scale opening combustion of biomass. In summary, this study provided important basic information for better understanding the pollution characteristics of EPFRs, which suggested that the implementation of energy transformation and straw utilization was benefit for the control of EPFRs in severe cold region.
Asunto(s)
Contaminantes Atmosféricos , Carbón Mineral , Monitoreo del Ambiente , Estaciones del Año , Contaminantes Atmosféricos/análisis , Carbón Mineral/análisis , China , Radicales Libres/análisis , Biomasa , Material Particulado/análisis , Ciudades , Contaminación del Aire/análisisRESUMEN
Recently, hydrogel-based soft materials have demonstrated huge potential in soft robotics, flexible electronics as well as artificial skins. Although various methods are developed to prepare tough and strong hydrogels, it is still challenging to simultaneously enhance the strength and toughness of hydrogels, especially for protein-based hydrogels. Herein, a biomimetic "salting out-alignment-locking" tactic (SALT) is introduced for enhancing mechanical properties through the synergy of alignment and the salting out effect. As a typical example, tensile strength and modulus of initially brittle gelatin hydrogels increase 940 folds to 10.12 ± 0.50 MPa and 2830 folds to 34.26 ± 3.94 MPa, respectively, and the toughness increases up to 1785 folds to 14.28 ± 3.13 MJ m-3. The obtained strength and toughness hold records for the previously reported gelatin-based hydrogel and are close to the tendons. It is further elucidated that the salting out effect engenders hydrophobic domains, while prestretching facilitates chain alignment, both synergistically contributing to the outstanding mechanical properties. It is noteworthy that the SALT demonstrates remarkable versatility across different salt types and polymer systems, thus opening up new avenues for engineering strong, tough, and stiff hydrogels.
RESUMEN
Fenugreek (Trigonella foenum-graecum L.) is a traditional medicinal plant for treating human diseases that is widely cultivated in many countries. However, the component and related metabolic pathways are still unclear. To understand the changes in expression of the component and related genes during seed development, this study employed metabolomic and transcriptomic analyses and integrative analysis to explore the metabolites and pathways involved in the growth of fenugreek. The antifungal activity of the fenugreek seeds was also analyzed. A total of 9499 metabolites were identified in the positive ion mode, and 8043 metabolites were identified in the negative ion mode. Among them, the main components were fatty acyls, prenol lipids, steroids, steroid derivatives, flavonoids, and isoflavonoids. Among these enriched pathways, the top 20 pathways were "flavone and flavonol biosynthesis", "isoflavonoid biosynthesis", and "flavonoid biosynthesis". 3,7-Di-O-methylquercetin, flavonoids, pseudobaptigenin, isoflavonoids, methylecgonine, alkaloids, and derivatives were the most significantly upregulated metabolites. There were 38,137 differentially expressed genes (DEGs) identified via transcriptomic analysis. According to the KEGG pathway enrichment analysis, 147 DEGs were significantly enriched in "flavonoid biosynthesis". Ten DEGs of the six key enzymes were found to be involved in three pathways related to flavonoid and alkaloid synthesis in fenugreek. The antifungal activity test revealed the inhibitory effect of the ethanol extract of fenugreek seeds on Alternaria tenuissima (Kunze)Wiltshire and Magnaporthe oryzae. These findings further prove that the use of botanical pesticides in fenugreek fruit has research value.
Asunto(s)
Trigonella , Humanos , Trigonella/genética , Antifúngicos/metabolismo , Extractos Vegetales/metabolismo , Flavonoides/metabolismo , Semillas/genética , Semillas/químicaRESUMEN
This dataset presents perceived values and socioeconomic indicators collected in Siaya, a rural county in Kenya in 2022. The data was obtained from 300 household surveys and group interviews conducted in six sub-counties across eleven villages. Socioeconomic data were collected with a special focus on climate change vulnerability. Information on housing, health, water accessibility and usage, electricity accessibility and usage, extreme weather events, community service, and information accessibility were mapped across survey questions. The user-perceived value (UPV) game - a perception-based surveying approach - was used to elicit local communities' needs and perceptions of climate change challenges. The UPV game involves asking interviewees to select which graphically depicted items would be most necessary in different situations and probing them for the reasons behind their choices (why-probing). The data was collected in two languages (Dholuo and English) and then translated into English. These surveys and interviews were conducted to better understand the needs of rural Kenyan communities and their perceptions of climate change, with the aim to identify ways to build resilience. Kenyan policymakers can use the dataset to inform county-level energy and development plans, while researchers and development practitioners can use the dataset to better design their research and programmes to reflect local needs and values.