Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(8)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38673956

RESUMEN

For a wide range of chronic autoimmune and inflammatory diseases in both adults and children, synthetic glucocorticoids (GCs) are one of the most effective treatments. However, besides other adverse effects, GCs inhibit bone mass at multiple levels, and at different ages, especially in puberty. Although extensive studies have investigated the mechanism of GC-induced osteoporosis, their target cell populations still be obscure. Here, our data show that the osteoblast subpopulation among Gli1+ metaphyseal mesenchymal progenitors (MMPs) is responsive to GCs as indicated by lineage tracing and single-cell RNA sequencing experiments. Furthermore, the proliferation and differentiation of Gli1+ MMPs are both decreased, which may be because GCs impair the oxidative phosphorylation(OXPHOS) and aerobic glycolysis of Gli1+ MMPs. Teriparatide, as one of the potential treatments for GCs in bone mass, is sought to increase bone volume by increasing the proliferation and differentiation of Gli1+ MMPs in vivo. Notably, our data demonstrate teriparatide ameliorates GC-caused bone defects by targeting Gli1+ MMPs. Thus, Gli1+ MMPs will be the potential mesenchymal progenitors in response to diverse pharmaceutical administrations in regulating bone formation.


Asunto(s)
Glucocorticoides , Células Madre Mesenquimatosas , Osteoporosis , Animales , Ratones , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Glucocorticoides/efectos adversos , Glucocorticoides/farmacología , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Ratones Endogámicos C57BL , Osteoblastos/metabolismo , Osteoblastos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Osteoporosis/inducido químicamente , Osteoporosis/metabolismo , Osteoporosis/patología , Teriparatido/farmacología , Proteína con Dedos de Zinc GLI1/metabolismo , Proteína con Dedos de Zinc GLI1/genética
2.
EMBO Rep ; 25(4): 1773-1791, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38409269

RESUMEN

Skeletal growth promoted by endochondral ossification is tightly coordinated by self-renewal and differentiation of chondrogenic progenitors. Emerging evidence has shown that multiple skeletal stem cells (SSCs) participate in cartilage formation. However, as yet, no study has reported the existence of common long-lasting chondrogenic progenitors in various types of cartilage. Here, we identify Gli1+ chondrogenic progenitors (Gli1+ CPs), which are distinct from PTHrP+ or FoxA2+ SSCs, are responsible for the lifelong generation of chondrocytes in the growth plate, vertebrae, ribs, and other cartilage. The absence of Gli1+ CPs leads to cartilage defects and dwarfishness phenotype in mice. Furthermore, we show that the BMP signal plays an important role in self-renewal and maintenance of Gli1+ CPs. Deletion of Bmpr1α triggers Gli1+ CPs quiescence exit and causes the exhaustion of Gli1+ CPs, consequently disrupting columnar cartilage. Collectively, our data demonstrate that Gli1+ CPs are common long-term chondrogenic progenitors in multiple types of cartilage and are essential to maintain cartilage homeostasis.


Asunto(s)
Cartílago , Condrogénesis , Animales , Ratones , Proteína con Dedos de Zinc GLI1/genética , Condrogénesis/genética , Condrocitos , Osteogénesis , Diferenciación Celular
3.
ACS Appl Mater Interfaces ; 16(5): 5486-5503, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38284176

RESUMEN

Cranial bone defects remain a major clinical challenge, increasing patients' life burdens. Tricarboxylic acid (TCA) cycle metabolites play crucial roles in facilitating bone tissue regeneration. However, the development of TCA cycle metabolite-modified biomimetic grafts for skull bone regeneration still needs to be improved. The mechanism underlying the release of TCA cycle metabolites from biomaterials in regulating immune responses and mesenchymal stem cell (MSC) fate (migration and differentiation) remains unknown. Herein, this work constructs biomimetic hydrogels composed of gelatin and chitosan networks covalently cross-linked by genipin (CGG hydrogels). A series of TCA cycle metabolite-coordinated CGG hydrogels with strong mechanical and antiswelling performances are subsequently developed. Remarkably, the citrate (Na3Cit, Cit)-coordinated CGG hydrogels (CGG-Cit hydrogels) with the highest mechanical modulus and strength significantly promote skull bone regeneration in rat and murine cranial defects. Mechanistically, using a transgenic mouse model, bulk RNA sequencing, and single-cell RNA sequencing, this work demonstrates that CGG-Cit hydrogels promote Gli1+ MSC migration via neutrophil-secreted oncostatin M. Results also indicate that citrate improves osteogenesis via enhanced histone H3K9 acetylation on osteogenic master genes. Taken together, the immune microenvironment- and MSC fate-regulated CGG-Cit hydrogels represent a highly efficient and facile approach toward skull bone tissue regeneration with great potential for bench-to-bedside translation.


Asunto(s)
Células Madre Mesenquimatosas , Osteogénesis , Humanos , Ratas , Ratones , Animales , Histonas , Ciclo del Ácido Cítrico , Acetilación , Neutrófilos/metabolismo , Regeneración Ósea , Cráneo/metabolismo , Diferenciación Celular , Hidrogeles/farmacología , Hidrogeles/metabolismo , Citratos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA