Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Phytomedicine ; 127: 155478, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38452696

RESUMEN

BACKGROUND: The increasing incidence of nonalcoholic fatty liver disease (NAFLD) has urged the development of new therapeutics. NAFLD is intimately linked to gut microbiota due to the hepatic portal system, and utilizing natural polysaccharides as prebiotics has become a prospective strategy for preventing NAFLD. Smilax china L. polysaccharide (SCP) possesses excellent hepatoprotective and anti-inflammatory activity. However, its protective effects on NAFLD remains unclear. PURPOSE: The goal of this study was to explore the protective effects of SCP on high-fat diet (HFD)-induced NAFLD mice by regulating hepatic fat metabolism and gut microbiota. METHODS: Extraction and isolation from Smilax china L. rhizome to obtain SCP. C57BL/6 J mice were distributed to six groups: Control (normal chow diet), HFD-fed mice were assigned to HFD, simvastatin (SVT), and low-, medium-, high-doses of SCP for 12 weeks. The body, liver, and different adipose tissues weights were detected, and lipids in serum and liver were assessed. RT-PCR and Western blot were used to detect the hepatic fat metabolism-related genes and proteins. Gut microbiota of cecum contents was profiled through 16S rRNA gene sequencing. RESULTS: SCP effectively reversed HFD-induced increase weights of body, liver, and different adipose tissues. Lipid levels of serum and liver were also significantly reduced after SCP intervention. According to the results of RT-PCR and western blot analysis, SCP treatment up-regulated the genes and proteins related to lipolysis were up-regulated, while lipogenesis-related genes and proteins were down-regulated. Furthermore, the HFD-induced dysbiosis of intestinal microbiota was similarly repaired by SCP intervention, including enriching beneficial bacteria and depleting harmful bacteria. CONCLUSION: SCP could effectively prevent HFD-induced NAFLD, might be considered as a prebiotic agent due to its excellent effects on altering hepatic fat metabolism and maintaining gut microbiota homeostasis.


Asunto(s)
Microbioma Gastrointestinal , Enfermedad del Hígado Graso no Alcohólico , Smilax , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Dieta Alta en Grasa/efectos adversos , ARN Ribosómico 16S , Ratones Endogámicos C57BL , Hígado , Metabolismo de los Lípidos , Polisacáridos/farmacología , China
2.
Int J Biol Macromol ; 252: 126511, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37625745

RESUMEN

This work aimed to explore whether the persistent inflammation induced by lipopolysaccharide (LPS) ameliorates fat accumulation by promoting adipose browning in vitro and in vivo. LPS over 1 ng/mL reduced lipid accumulation while increasing the expressions of specific genes involved in inflammation, mitochondrial biogenesis, and adipose browning in 3T3-L1 adipocytes. Moreover, LPS in intraperitoneal injection decreased white adipose tissue weight and elevated interscapular brown adipose tissue weight in mice. According to RT-PCR and western blot analysis results, the expressions of genes and proteins related to inflammation, mitochondrial biogenesis, lipolysis, and brown or beige markers in different tissues were elevated after LPS intervention. Cumulatively, LPS-induced persistent inflammation may potentially ameliorate fat accumulation by facilitating adipose browning in 3T3-L1 adipocytes and mice. These results offer new perspectives into the effect of persistent inflammation induced by LPS on regulating fat metabolism, thereby reducing fat accumulation by boosting adipose browning procedure.


Asunto(s)
Lipopolisacáridos , Obesidad , Animales , Ratones , Lipopolisacáridos/farmacología , Obesidad/metabolismo , Adipocitos , Adiposidad , Tejido Adiposo Blanco , Inflamación/metabolismo , Células 3T3-L1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA