Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Science ; 384(6700): eadk0850, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38843329

RESUMEN

To delineate the mechanisms by which the ERK1 and ERK2 mitogen-activated protein kinases support mutant KRAS-driven cancer growth, we determined the ERK-dependent phosphoproteome in KRAS-mutant pancreatic cancer. We determined that ERK1 and ERK2 share near-identical signaling and transforming outputs and that the KRAS-regulated phosphoproteome is driven nearly completely by ERK. We identified 4666 ERK-dependent phosphosites on 2123 proteins, of which 79 and 66%, respectively, were not previously associated with ERK, substantially expanding the depth and breadth of ERK-dependent phosphorylation events and revealing a considerably more complex function for ERK in cancer. We established that ERK controls a highly dynamic and complex phosphoproteome that converges on cyclin-dependent kinase regulation and RAS homolog guanosine triphosphatase function (RHO GTPase). Our findings establish the most comprehensive molecular portrait and mechanisms by which ERK drives KRAS-dependent pancreatic cancer growth.


Asunto(s)
Proteína Quinasa 1 Activada por Mitógenos , Proteína Quinasa 3 Activada por Mitógenos , Neoplasias Pancreáticas , Fosfoproteínas , Proteoma , Proteínas Proto-Oncogénicas p21(ras) , Animales , Humanos , Ratones , Línea Celular Tumoral , Quinasas Ciclina-Dependientes/metabolismo , Quinasas Ciclina-Dependientes/genética , Sistema de Señalización de MAP Quinasas , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Mutación , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Fosforilación , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Células HEK293
2.
Cancer Res ; 83(1): 141-157, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36346366

RESUMEN

Mutational loss of CDKN2A (encoding p16INK4A) tumor-suppressor function is a key genetic step that complements activation of KRAS in promoting the development and malignant growth of pancreatic ductal adenocarcinoma (PDAC). However, pharmacologic restoration of p16INK4A function with inhibitors of CDK4 and CDK6 (CDK4/6) has shown limited clinical efficacy in PDAC. Here, we found that concurrent treatment with both a CDK4/6 inhibitor (CDK4/6i) and an ERK-MAPK inhibitor (ERKi) synergistically suppresses the growth of PDAC cell lines and organoids by cooperatively blocking CDK4/6i-induced compensatory upregulation of ERK, PI3K, antiapoptotic signaling, and MYC expression. On the basis of these findings, a Phase I clinical trial was initiated to evaluate the ERKi ulixertinib in combination with the CDK4/6i palbociclib in patients with advanced PDAC (NCT03454035). As inhibition of other proteins might also counter CDK4/6i-mediated signaling changes to increase cellular CDK4/6i sensitivity, a CRISPR-Cas9 loss-of-function screen was conducted that revealed a spectrum of functionally diverse genes whose loss enhanced CDK4/6i growth inhibitory activity. These genes were enriched around diverse signaling nodes, including cell-cycle regulatory proteins centered on CDK2 activation, PI3K-AKT-mTOR signaling, SRC family kinases, HDAC proteins, autophagy-activating pathways, chromosome regulation and maintenance, and DNA damage and repair pathways. Novel therapeutic combinations were validated using siRNA and small-molecule inhibitor-based approaches. In addition, genes whose loss imparts a survival advantage were identified (e.g., RB1, PTEN, FBXW7), suggesting possible resistance mechanisms to CDK4/6 inhibition. In summary, this study has identified novel combinations with CDK4/6i that may have clinical benefit to patients with PDAC. SIGNIFICANCE: CRISPR-Cas9 screening and protein activity mapping reveal combinations that increase potency of CDK4/6 inhibitors and overcome drug-induced compensations in pancreatic cancer.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Línea Celular Tumoral , Quinasa 4 Dependiente de la Ciclina , Quinasa 6 Dependiente de la Ciclina , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Neoplasias Pancreáticas
3.
Cancer Res ; 82(4): 586-598, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34921013

RESUMEN

The aggressive nature of pancreatic ductal adenocarcinoma (PDAC) mandates the development of improved therapies. As KRAS mutations are found in 95% of PDAC and are critical for tumor maintenance, one promising strategy involves exploiting KRAS-dependent metabolic perturbations. The macrometabolic process of autophagy is upregulated in KRAS-mutant PDAC, and PDAC growth is reliant on autophagy. However, inhibition of autophagy as monotherapy using the lysosomal inhibitor hydroxychloroquine (HCQ) has shown limited clinical efficacy. To identify strategies that can improve PDAC sensitivity to HCQ, we applied a CRISPR-Cas9 loss-of-function screen and found that a top sensitizer was the receptor tyrosine kinase (RTK) insulin-like growth factor 1 receptor (IGF1R). Additionally, reverse phase protein array pathway activation mapping profiled the signaling pathways altered by chloroquine (CQ) treatment. Activating phosphorylation of RTKs, including IGF1R, was a common compensatory increase in response to CQ. Inhibition of IGF1R increased autophagic flux and sensitivity to CQ-mediated growth suppression both in vitro and in vivo. Cotargeting both IGF1R and pathways that antagonize autophagy, such as ERK-MAPK axis, was strongly synergistic. IGF1R and ERK inhibition converged on suppression of glycolysis, leading to enhanced dependence on autophagy. Accordingly, concurrent inhibition of IGF1R, ERK, and autophagy induced cytotoxicity in PDAC cell lines and decreased viability in human PDAC organoids. In conclusion, targeting IGF1R together with ERK enhances the effectiveness of autophagy inhibitors in PDAC. SIGNIFICANCE: Compensatory upregulation of IGF1R and ERK-MAPK signaling limits the efficacy of autophagy inhibitors chloroquine and hydroxychloroquine, and their concurrent inhibition synergistically increases autophagy dependence and chloroquine sensitivity in pancreatic ductal adenocarcinoma.


Asunto(s)
Autofagia/fisiología , Carcinoma Ductal Pancreático/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Neoplasias Pancreáticas/metabolismo , Receptor IGF Tipo 1/metabolismo , Animales , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Sinergismo Farmacológico , Inhibidores Enzimáticos/farmacología , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Glucólisis/efectos de los fármacos , Células HEK293 , Humanos , Hidroxicloroquina/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Fosforilación/efectos de los fármacos , Pirazoles/farmacología , Receptor IGF Tipo 1/antagonistas & inhibidores , Triazinas/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
4.
Cell Rep ; 37(9): 110060, 2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34852220

RESUMEN

We apply genetic screens to delineate modulators of KRAS mutant pancreatic ductal adenocarcinoma (PDAC) sensitivity to ERK inhibitor treatment, and we identify components of the ATR-CHK1 DNA damage repair (DDR) pathway. Pharmacologic inhibition of CHK1 alone causes apoptotic growth suppression of both PDAC cell lines and organoids, which correlates with loss of MYC expression. CHK1 inhibition also activates ERK and AMPK and increases autophagy, providing a mechanistic basis for increased efficacy of concurrent CHK1 and ERK inhibition and/or autophagy inhibition with chloroquine. To assess how CHK1 inhibition-induced ERK activation promotes PDAC survival, we perform a CRISPR-Cas9 loss-of-function screen targeting direct/indirect ERK substrates and identify RIF1. A key component of non-homologous end joining repair, RIF1 suppression sensitizes PDAC cells to CHK1 inhibition-mediated apoptotic growth suppression. Furthermore, ERK inhibition alone decreases RIF1 expression and phenocopies RIF1 depletion. We conclude that concurrent DDR suppression enhances the efficacy of ERK and/or autophagy inhibitors in KRAS mutant PDAC.


Asunto(s)
Carcinoma Ductal Pancreático/tratamiento farmacológico , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/antagonistas & inhibidores , Daño del ADN , Mutación , Neoplasias Pancreáticas/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas p21(ras)/genética , Animales , Apoptosis , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Proliferación Celular , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Humanos , Ratones , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
5.
J Biol Chem ; 297(5): 101335, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34688654

RESUMEN

Oncogenic KRAS drives cancer growth by activating diverse signaling networks, not all of which have been fully delineated. We set out to establish a system-wide profile of the KRAS-regulated kinase signaling network (kinome) in KRAS-mutant pancreatic ductal adenocarcinoma (PDAC). We knocked down KRAS expression in a panel of six cell lines and then applied multiplexed inhibitor bead/MS to monitor changes in kinase activity and/or expression. We hypothesized that depletion of KRAS would result in downregulation of kinases required for KRAS-mediated transformation and in upregulation of other kinases that could potentially compensate for the deleterious consequences of the loss of KRAS. We identified 15 upregulated and 13 downregulated kinases in common across the panel of cell lines. In agreement with our hypothesis, all 15 of the upregulated kinases have established roles as cancer drivers (e.g., SRC, TGF-ß1, ILK), and pharmacological inhibition of one of these upregulated kinases, DDR1, suppressed PDAC growth. Interestingly, 11 of the 13 downregulated kinases have established driver roles in cell cycle progression, particularly in mitosis (e.g., WEE1, Aurora A, PLK1). Consistent with a crucial role for the downregulated kinases in promoting KRAS-driven proliferation, we found that pharmacological inhibition of WEE1 also suppressed PDAC growth. The unexpected paradoxical activation of ERK upon WEE1 inhibition led us to inhibit both WEE1 and ERK concurrently, which caused further potent growth suppression and enhanced apoptotic death compared with WEE1 inhibition alone. We conclude that system-wide delineation of the KRAS-regulated kinome can identify potential therapeutic targets for KRAS-mutant pancreatic cancer.


Asunto(s)
Carcinoma Ductal Pancreático , Proteínas de Ciclo Celular/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Mutación , Neoplasias Pancreáticas , Proteínas Tirosina Quinasas/metabolismo , Proteínas Proto-Oncogénicas p21(ras) , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/enzimología , Carcinoma Ductal Pancreático/genética , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Humanos , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/enzimología , Neoplasias Pancreáticas/genética , Proteínas Tirosina Quinasas/genética , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo
6.
Cell Rep ; 35(13): 109291, 2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34192548

RESUMEN

To identify therapeutic targets for KRAS mutant pancreatic cancer, we conduct a druggable genome small interfering RNA (siRNA) screen and determine that suppression of BCAR1 sensitizes pancreatic cancer cells to ERK inhibition. Integrative analysis of genome-scale CRISPR-Cas9 screens also identify BCAR1 as a top synthetic lethal interactor with mutant KRAS. BCAR1 encodes the SRC substrate p130Cas. We determine that SRC-inhibitor-mediated suppression of p130Cas phosphorylation impairs MYC transcription through a DOCK1-RAC1-ß-catenin-dependent mechanism. Additionally, genetic suppression of TUBB3, encoding the ßIII-tubulin subunit of microtubules, or pharmacological inhibition of microtubule function decreases levels of MYC protein in a calpain-dependent manner and potently sensitizes pancreatic cancer cells to ERK inhibition. Accordingly, the combination of a dual SRC/tubulin inhibitor with an ERK inhibitor cooperates to reduce MYC protein and synergistically suppress the growth of KRAS mutant pancreatic cancer. Thus, we demonstrate that mechanistically diverse combinations with ERK inhibition suppress MYC to impair pancreatic cancer proliferation.


Asunto(s)
Proteína Sustrato Asociada a CrK/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Microtúbulos/metabolismo , Neoplasias Pancreáticas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Acetamidas/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/genética , Calpaína/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Sinergismo Farmacológico , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Semivida , Humanos , Microtúbulos/efectos de los fármacos , Morfolinas/farmacología , Mutación/genética , Organoides/efectos de los fármacos , Organoides/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Piridinas/farmacología , Transcripción Genética/efectos de los fármacos , Tubulina (Proteína)/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Familia-src Quinasas/antagonistas & inhibidores , Familia-src Quinasas/metabolismo
7.
Nat Commun ; 9(1): 4417, 2018 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-30356053

RESUMEN

Kv1.2 is a prominent voltage-gated potassium channel that influences action potential generation and propagation in the central nervous system. We explored multi-protein complexes containing Kv1.2 using mass spectrometry followed by screening for effects on Kv1.2. We report that Slc7a5, a neutral amino acid transporter, has a profound impact on Kv1.2. Co-expression with Slc7a5 reduces total Kv1.2 protein, and dramatically hyperpolarizes the voltage-dependence of activation by -47 mV. These effects are attenuated by expression of Slc3a2, a known binding partner of Slc7a5. The profound Slc7a5-mediated current suppression is partly explained by a combination of gating effects including accelerated inactivation and a hyperpolarizing shift of channel activation, causing channels to accumulate in a non-conducting state. Two recently reported Slc7a5 mutations linked to neurodevelopmental delay exhibit a localization defect and have attenuated effects on Kv1.2. In addition, epilepsy-linked gain-of-function Kv1.2 mutants exhibit enhanced sensitivity to Slc7a5.


Asunto(s)
Epilepsia/metabolismo , Canal de Potasio Kv.1.2/metabolismo , Transportador de Aminoácidos Neutros Grandes 1/metabolismo , Animales , Western Blotting , Electrofisiología , Epilepsia/genética , Citometría de Flujo , Células HEK293 , Humanos , Inmunoprecipitación , Canal de Potasio Kv.1.2/genética , Transportador de Aminoácidos Neutros Grandes 1/genética , Espectrometría de Masas , Ratones , Ratas Sprague-Dawley
8.
J Gen Physiol ; 150(12): 1722-1734, 2018 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-30373787

RESUMEN

Ion channels encoded by KCNQ2-5 generate a prominent K+ conductance in the central nervous system, referred to as the M current, which is controlled by membrane voltage and PIP2. The KCNQ2-5 voltage-gated potassium channels are targeted by a variety of activating compounds that cause negative shifts in the voltage dependence of activation. The underlying pharmacology of these effects is of growing interest because of possible clinical applications. Recent studies have revealed multiple binding sites and mechanisms of action of KCNQ activators. For example, retigabine targets the pore domain, but several compounds have been shown to influence the voltage-sensing domain. An important unexplored feature of these compounds is the influence of channel gating on drug binding or effects. In the present study, we compare the state-dependent actions of retigabine and ICA-069673 (ICA73, a voltage sensor-targeted activator). We assess drug binding to preopen states by applying drugs to homomeric KCNQ2 channels at different holding voltages, demonstrating little or no association of ICA73 with resting states. Using rapid solution switching, we also demonstrate that the rate of onset of ICA73 correlates with the voltage dependence of channel activation. Retigabine actions differ significantly, with prominent drug effects seen at very negative holding voltages and distinct voltage dependences of drug binding versus channel activation. Using similar approaches, we investigate the mechanistic basis for attenuation of ICA73 actions by the voltage-sensing domain mutation KCNQ2[A181P]. Our findings demonstrate different state-dependent actions of pore- versus voltage sensor-targeted KCNQ channel activators, which highlight that subtypes of this drug class operate with distinct mechanisms.


Asunto(s)
Anticonvulsivantes/farmacología , Carbamatos/farmacología , Canal de Potasio KCNQ2/efectos de los fármacos , Fenilendiaminas/farmacología , Células HEK293 , Humanos , Canal de Potasio KCNQ2/genética , Mutación , Técnicas de Placa-Clamp
9.
J Gen Physiol ; 150(10): 1432-1443, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30166313

RESUMEN

KCNQ2-5 (Kv7.2-Kv7.5) channels are strongly influenced by an emerging class of small-molecule channel activators. Retigabine is the prototypical KCNQ activator that is thought to bind within the pore. It requires the presence of a Trp side chain that is conserved among retigabine-sensitive channels but absent in the retigabine-insensitive KCNQ1 subtype. Recent work has demonstrated that certain KCNQ openers are insensitive to mutations of this conserved Trp, and that their effects are instead abolished or attenuated by mutations in the voltage-sensing domain (VSD). In this study, we investigate the stoichiometry of a VSD-targeted KCNQ2 channel activator, ICA-069673, by forming concatenated channel constructs with varying numbers of drug-insensitive subunits. In homomeric WT KCNQ2 channels, ICA-069673 strongly stabilizes an activated channel conformation, which is reflected in the pronounced deceleration of deactivation and leftward shift of the conductance-voltage relationship. A full complement of four drug-sensitive subunits is required for maximal sensitivity to ICA-069673-even a single drug-insensitive subunit leads to significantly weakened effects. In a companion article (see Yau et al. in this issue), we demonstrate very different stoichiometry for the action of retigabine on KCNQ3, for which a single retigabine-sensitive subunit enables near-maximal effect. Together, these studies highlight fundamental differences in the site and mechanism of activation between retigabine and voltage sensor-targeted KCNQ openers.


Asunto(s)
Canales de Potasio KCNQ/efectos de los fármacos , Moduladores del Transporte de Membrana/farmacología , Células HEK293 , Humanos , Canales de Potasio KCNQ/genética , Mutación
10.
J Gen Physiol ; 150(10): 1421-1431, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30166314

RESUMEN

Retigabine is an antiepileptic drug and the first voltage-gated potassium (Kv) channel opener to be approved for human therapeutic use. Retigabine is thought to interact with a conserved Trp side chain in the pore of KCNQ2-5 (Kv7.2-7.5) channels, causing a pronounced hyperpolarizing shift in the voltage dependence of activation. In this study, we investigate the functional stoichiometry of retigabine actions by manipulating the number of retigabine-sensitive subunits in concatenated KCNQ3 channel tetramers. We demonstrate that intermediate retigabine concentrations cause channels to exhibit biphasic conductance-voltage relationships rather than progressive concentration-dependent shifts. This suggests that retigabine can exert its effects in a nearly "all-or-none" manner, such that channels exhibit either fully shifted or unshifted behavior. Supporting this notion, concatenated channels containing only a single retigabine-sensitive subunit exhibit a nearly maximal retigabine effect. Also, rapid solution exchange experiments reveal delayed kinetics during channel closure, as retigabine dissociates from channels with multiple drug-sensitive subunits. Collectively, these data suggest that a single retigabine-sensitive subunit can generate a large shift of the KCNQ3 conductance-voltage relationship. In a companion study (Wang et al. 2018. J. Gen. Physiol. https://doi.org/10.1085/jgp.201812014), we contrast these findings with the stoichiometry of a voltage sensor-targeted KCNQ channel opener (ICA-069673), which requires four drug-sensitive subunits for maximal effect.


Asunto(s)
Anticonvulsivantes/farmacología , Carbamatos/farmacología , Canal de Potasio KCNQ3/efectos de los fármacos , Fenilendiaminas/farmacología , Animales , Canal de Potasio KCNQ3/genética , Mutación , Xenopus laevis
11.
Sci Rep ; 7(1): 9142, 2017 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-28831076

RESUMEN

Kv1.2 is a prominent potassium channel subtype in the nervous system and serves as an important structural template for investigation of ion channel function. However, Kv1.2 voltage-dependence exhibits dramatic cell-to-cell variability due to a gating mode shift that is regulated by an unknown mechanism. We report that this variable behavior is regulated by the extracellular redox environment. Exposure to reducing agents promotes a shift in gating properties towards an 'inhibited' gating mode that resists opening, and causes channels to exhibit pronounced use-dependent activation during trains of repetitive depolarizations. This sensitivity to extracellular redox potential is absent in other Kv1 channels, but is apparent in heteromeric channels containing Kv1.2 subunits, and overlaps with the reported physiological range of extracellular redox couples. Mutagenesis of candidate cysteine residues fails to abolish redox sensitivity. Therefore, we suggest that an extrinsic, redox-sensitive binding partner imparts these properties.


Asunto(s)
Canal de Potasio Kv.1.2/genética , Canal de Potasio Kv.1.2/metabolismo , Oxidación-Reducción , Animales , Línea Celular , Cisteína/genética , Fibroblastos/citología , Fibroblastos/metabolismo , Canal de Potasio Kv.1.2/química , Potenciales de la Membrana , Ratones , Mutación , Especificidad de Órganos
12.
J Physiol ; 595(3): 663-676, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-27506413

RESUMEN

KEY POINTS: Retigabine is a KCNQ voltage-gated potassium channel opener that was recently approved as an add-on therapeutic for patients with drug-resistant epilepsy. Retigabine exhibits very little specificity between most KCNQ channel subtypes, and there is interest in generating more potent and specific KCNQ channel openers. The present study describes the marked specificity of ICA069673 for KCNQ2 vs. KCNQ3, and exploits this property to investigate determinants of KCNQ subtype specificity. ICA069673 acts on a binding site in the voltage-sensing domain that is distinct from the putative retigabine site in the channel pore. ICA069673 has two separable effects on KCNQ channel activity. We identify two channel residues required for subtype specificity of KCNQ channel openers and show that these are sufficient to generate ICA069673 sensitivity in KCNQ3. ABSTRACT: Retigabine (RTG) is the first approved anti-epileptic drug that acts via activation of voltage-gated potassium channels, targeting KCNQ channels that underlie the neuronal M-current. RTG exhibits little specificity between KCNQ2-5 as a result of conservation of a Trp residue in the pore domain that binds to the drug. The RTG analogue ICA-069673 ('ICA73') exhibits much stronger effects on KCNQ2 channels, including a large hyperpolarizing shift of the voltage-dependence of activation, an ∼2-fold enhancement of peak current and pronounced subtype specificity for KCNQ2 over KCNQ3. Based on ICA73 sensitivity of chimeric constructs of the transmembrane segments of KCNQ2 and KCNQ3, this drug appears to interact with the KCNQ2 voltage sensor (S1-S4) rather than the pore region targeted by RTG. KCNQ2 point mutants in the voltage sensor were generated based on KCNQ2/KCNQ3 sequence differences, and screened for ICA73 sensitivity. These experiments reveal that KCNQ2 residues F168 and A181 in the S3 segment are essential determinants of ICA73 subtype specificity. Mutations at either position in KCNQ2 abolish the ICA73-mediated gating shift, but preserve RTG sensitivity. Interestingly, A181P mutant channels show little ICA73-mediated gating shift but retain current potentiation by the drug. Mutations (L198F and P211A), which introduce these critical KCNQ2 residues at corresponding positions in KCNQ3, transplant partial ICA73 sensitivity. These findings demonstrate that RTG and ICA73 act via distinct mechanisms, and also reveal specific residues that underlie subtype specificity of KCNQ channel openers.


Asunto(s)
Carbamatos/farmacología , Canal de Potasio KCNQ2/fisiología , Canal de Potasio KCNQ3/fisiología , Moduladores del Transporte de Membrana/farmacología , Fenilendiaminas/farmacología , Células HEK293 , Humanos , Activación del Canal Iónico , Canal de Potasio KCNQ2/genética , Canal de Potasio KCNQ3/genética , Modelos Moleculares , Mutación
13.
Channels (Austin) ; 10(2): 158-66, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26646078

RESUMEN

Voltage-gated potassium channels are important regulators of electrical excitation in many tissues, with Kv1.2 standing out as an essential contributor in the CNS. Genetic deletion of Kv1.2 invariably leads to early lethality in mice. In humans, mutations affecting Kv1.2 function are linked to epileptic encephalopathy and movement disorders. We have demonstrated that Kv1.2 is subject to a unique regulatory mechanism in which repetitive stimulation leads to dramatic potentiation of current. In this study, we explore the properties and molecular determinants of this use-dependent potentiation/activation. First, we examine how alterations in duty cycle (depolarization and repolarization/recovery times) affect the onset and extent of use-dependent activation. Also, we use trains of repetitive depolarizations to test the effects of a variety of Thr252 (S2-S3 linker) mutations on use-dependent activation. Substitutions of Thr with some sterically similar amino acids (Ser, Val, and Met, but not Cys) retain use-dependent activation, while bulky or charged amino acid substitutions eliminate use-dependence. Introduction of Thr at the equivalent position in other Kv1 channels (1.1, 1.3, 1.4), was not sufficient to transfer the phenotype. We hypothesize that use-dependent activation of Kv1.2 channels is mediated by an extrinsic regulator that binds preferentially to the channel closed state, with Thr252 being necessary but not sufficient for this interaction to alter channel function. These findings extend the conclusions of our recent demonstration of use-dependent activation of Kv1.2-containing channels in hippocampal neurons, by adding new details about the molecular mechanism underlying this effect.


Asunto(s)
Fibroblastos/metabolismo , Activación del Canal Iónico , Canal de Potasio Kv.1.2/metabolismo , Potenciales de la Membrana/fisiología , Sustitución de Aminoácidos , Animales , Sitios de Unión , Línea Celular , Fibroblastos/citología , Regulación de la Expresión Génica , Humanos , Canal de Potasio Kv.1.2/genética , Ratones , Mutación , Técnicas de Placa-Clamp , Unión Proteica , Proteínas Tirosina Quinasas Receptoras/deficiencia , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
14.
BMC Syst Biol ; 9: 42, 2015 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-26209979

RESUMEN

BACKGROUND: The cAMP-dependent protein kinase regulatory network (PKA-RN) regulates metabolism, memory, learning, development, and response to stress. Previous models of this network considered the catalytic subunits (CS) as a single entity, overlooking their functional individualities. Furthermore, PKA-RN dynamics are often measured through cAMP levels in nutrient-depleted cells shortly after being fed with glucose, dismissing downstream physiological processes. RESULTS: Here we show that temperature stress, along with deletion of PKA-RN genes, significantly affected HSE-dependent gene expression and the dynamics of the PKA-RN in cells growing in exponential phase. Our genetic analysis revealed complex regulatory interactions between the CS that influenced the inhibition of Hsf1/Skn7 transcription factors. Accordingly, we found new roles in growth control and stress response for Hsf1/Skn7 when PKA activity was low (cdc25Δ cells). Experimental results were used to propose an interaction scheme for the PKA-RN and to build an extension of a classic synchronous discrete modeling framework. Our computational model reproduced the experimental data and predicted complex interactions between the CS and the existence of a repressor of Hsf1/Skn7 that is activated by the CS. Additional genetic analysis identified Ssa1 and Ssa2 chaperones as such repressors. Further modeling of the new data foresaw a third repressor of Hsf1/Skn7, active only in the absence of Tpk2. By averaging the network state over all its attractors, a good quantitative agreement between computational and experimental results was obtained, as the averages reflected more accurately the population measurements. CONCLUSIONS: The assumption of PKA being one molecular entity has hindered the study of a wide range of behaviors. Additionally, the dynamics of HSE-dependent gene expression cannot be simulated accurately by considering the activity of single PKA-RN components (i.e., cAMP, individual CS, Bcy1, etc.). We show that the differential roles of the CS are essential to understand the dynamics of the PKA-RN and its targets. Our systems level approach, which combined experimental results with theoretical modeling, unveils the relevance of the interaction scheme for the CS and offers quantitative predictions for several scenarios (WT vs. mutants in PKA-RN genes and growth at optimal temperature vs. heat shock).


Asunto(s)
Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Choque Térmico/metabolismo , Modelos Biológicos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Biocatálisis , Eliminación de Gen , Regulación Fúngica de la Expresión Génica , Respuesta al Choque Térmico , ARN Mensajero/genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/fisiología
15.
J Biol Chem ; 290(25): 15450-15461, 2015 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-25934393

RESUMEN

ATP-sensitive potassium (KATP) channels are heteromultimeric complexes of an inwardly rectifying Kir channel (Kir6.x) and sulfonylurea receptors. Their regulation by intracellular ATP and ADP generates electrical signals in response to changes in cellular metabolism. We investigated channel elements that control the kinetics of ATP-dependent regulation of KATP (Kir6.2 + SUR1) channels using rapid concentration jumps. WT Kir6.2 channels re-open after rapid washout of ATP with a time constant of ∼60 ms. Extending similar kinetic measurements to numerous mutants revealed fairly modest effects on gating kinetics despite significant changes in ATP sensitivity and open probability. However, we identified a pair of highly conserved neighboring amino acids (Trp-68 and Lys-170) that control the rate of channel opening and inhibition in response to ATP. Paradoxically, mutations of Trp-68 or Lys-170 markedly slow the kinetics of channel opening (500 and 700 ms for W68L and K170N, respectively), while increasing channel open probability. Examining the functional effects of these residues using φ value analysis revealed a steep negative slope. This finding implies that these residues play a role in lowering the transition state energy barrier between open and closed channel states. Using unnatural amino acid incorporation, we demonstrate the requirement for a planar amino acid at Kir6.2 position 68 for normal channel gating, which is potentially necessary to localize the ϵ-amine of Lys-170 in the phosphatidylinositol 4,5-bisphosphate-binding site. Overall, our findings identify a discrete pair of highly conserved residues with an essential role for controlling gating kinetics of Kir channels.


Asunto(s)
Canales de Potasio de Rectificación Interna/química , Sustitución de Aminoácidos , Animales , Sitios de Unión , Cinética , Ratones , Mutación Missense , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio de Rectificación Interna/metabolismo , Receptores de Sulfonilureas/química , Receptores de Sulfonilureas/genética , Receptores de Sulfonilureas/metabolismo
16.
J Neurosci ; 35(8): 3515-24, 2015 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-25716850

RESUMEN

In excitable cells, ion channels are frequently challenged by repetitive stimuli, and their responses shape cellular behavior by regulating the duration and termination of bursts of action potentials. We have investigated the behavior of Shaker family voltage-gated potassium (Kv) channels subjected to repetitive stimuli, with a particular focus on Kv1.2. Genetic deletion of this subunit results in complete mortality within 2 weeks of birth in mice, highlighting a critical physiological role for Kv1.2. Kv1.2 channels exhibit a unique property described previously as "prepulse potentiation," in which activation by a depolarizing step facilitates activation in a subsequent pulse. In this study, we demonstrate that this property enables Kv1.2 channels to exhibit use-dependent activation during trains of very brief depolarizations. Also, Kv subunits usually assemble into heteromeric channels in the central nervous system, generating diversity of function and sensitivity to signaling mechanisms. We demonstrate that other Kv1 channel types do not exhibit use-dependent activation, but this property is conferred in heteromeric channel complexes containing even a single Kv1.2 subunit. This regulatory mechanism is observed in mammalian cell lines as well as primary cultures of hippocampal neurons. Our findings illustrate that use-dependent activation is a unique property of Kv1.2 that persists in heteromeric channel complexes and may influence function of hippocampal neurons.


Asunto(s)
Activación del Canal Iónico , Neuronas/metabolismo , Canales de Potasio Shab/metabolismo , Animales , Línea Celular , Células Cultivadas , Femenino , Hipocampo/citología , Masculino , Potenciales de la Membrana , Ratones , Neuronas/fisiología , Subunidades de Proteína/metabolismo , Ratas , Ratas Sprague-Dawley
17.
J Gen Physiol ; 143(5): 645-56, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24778431

RESUMEN

Voltage-gated sodium (NaV) channels mediate electrical excitability in animals. Despite strong sequence conservation among the voltage-sensor domains (VSDs) of closely related voltage-gated potassium (KV) and NaV channels, the functional contributions of individual side chains in Nav VSDs remain largely enigmatic. To this end, natural and unnatural side chain substitutions were made in the S2 hydrophobic core (HC), the extracellular negative charge cluster (ENC), and the intracellular negative charge cluster (INC) of the four VSDs of the skeletal muscle sodium channel isoform (NaV1.4). The results show that the highly conserved aromatic side chain constituting the S2 HC makes distinct functional contributions in each of the four NaV domains. No obvious cation-pi interaction exists with nearby S4 charges in any domain, and natural and unnatural mutations at these aromatic sites produce functional phenotypes that are different from those observed previously in Kv VSDs. In contrast, and similar to results obtained with Kv channels, individually neutralizing acidic side chains with synthetic derivatives and with natural amino acid substitutions in the INC had little or no effect on the voltage dependence of activation in any of the four domains. Interestingly, countercharge was found to play an important functional role in the ENC of DI and DII, but not DIII and DIV. These results suggest that electrostatic interactions with S4 gating charges are unlikely in the INC and only relevant in the ENC of DI and DII. Collectively, our data highlight domain-specific functional contributions of highly conserved side chains in NaV VSDs.


Asunto(s)
Aminoácidos Acídicos/química , Aminoácidos Aromáticos/química , Activación del Canal Iónico , Proteínas Musculares/química , Canales de Sodio/química , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Aminoácidos Acídicos/genética , Aminoácidos Aromáticos/genética , Animales , Potenciales de la Membrana , Datos de Secuencia Molecular , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Estructura Terciaria de Proteína , Ratas , Canales de Sodio/genética , Canales de Sodio/metabolismo , Xenopus
18.
J Biol Chem ; 288(32): 23038-49, 2013 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-23798684

RESUMEN

Regulation of inwardly rectifying potassium channels by intracellular ligands couples cell membrane excitability to important signaling cascades and metabolic pathways. We investigated the molecular mechanisms that link ligand binding to the channel gate in ATP-sensitive Kir6.2 channels. In these channels, the "slide helix" forms an interface between the cytoplasmic (ligand-binding) domain and the transmembrane pore, and many slide helix mutations cause loss of function. Using a novel approach to rescue electrically silent channels, we decomposed the contribution of each interface residue to ATP-dependent gating. We demonstrate that effective inhibition by ATP relies on an essential aspartate at residue 58. Characterization of the functional importance of this conserved aspartate, relative to other residues in the slide helix, has been impossible because of loss-of-function of Asp-58 mutant channels. The Asp-58 position exhibits an extremely stringent requirement for aspartate because even a highly conservative mutation to glutamate is insufficient to restore normal channel function. These findings reveal unrecognized slide helix elements that are required for functional channel expression and control of Kir6.2 gating by intracellular ATP.


Asunto(s)
Adenosina Trifosfato/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Adenosina Trifosfato/genética , Sustitución de Aminoácidos , Animales , Línea Celular , Ratones , Mutación Missense , Canales de Potasio de Rectificación Interna/química , Canales de Potasio de Rectificación Interna/genética , Estructura Secundaria de Proteína
19.
J Biol Chem ; 286(42): 36686-93, 2011 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-21878633

RESUMEN

Numerous inwardly rectifying potassium (Kir) channels possess an aromatic residue in the helix bundle crossing region, forming the narrowest pore constriction in crystal structures. However, the role of the Kir channel bundle crossing as a functional gate remains uncertain. We report a unique phenotype of Kir6.2 channels mutated to encode glutamate at this position (F168E). Despite a prediction of four glutamates in close proximity, Kir6.2(F168E) channels are predominantly closed at physiological pH, whereas alkalization causes rapid and reversible channel activation. These findings suggest that F168E glutamates are uncharged at physiological pH but become deprotonated at alkaline pH, forcing channel opening due to mutual repulsion of nearby negatively charged side chains. The potassium channel pore scaffold likely brings these glutamates close together, causing a significant pK(a) shift relative to the free side chain (as seen in the KcsA selectivity filter). Alkalization also shifts the apparent ATP sensitivity of the channel, indicating that forced motion of the bundle crossing is coupled to the ATP-binding site and may resemble conformational changes involved in wild-type Kir6.2 gating. The study demonstrates a novel mechanism for engineering extrinsic control of channel gating by pH and shows that conformational changes in the bundle crossing region are involved in ligand-dependent gating of Kir channels.


Asunto(s)
Activación del Canal Iónico/fisiología , Canales de Potasio de Rectificación Interna/metabolismo , Sustitución de Aminoácidos , Animales , Línea Celular , Concentración de Iones de Hidrógeno , Ratones , Mutación Missense , Canales de Potasio de Rectificación Interna/química , Canales de Potasio de Rectificación Interna/genética , Conformación Proteica , Xenopus laevis
20.
Biochim Biophys Acta ; 1808(7): 1790-6, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21315686

RESUMEN

Structural analyses of bacterial ATP-binding-cassette transporters revealed that the glutamine residue in Q-loop plays roles in interacting with: 1) a metal cofactor to participate in ATP binding; 2) a putative catalytic water molecule to participate in ATP hydrolysis; 3) other residues to transmit the conformational changes between nucleotide-binding-domains and transmembrane-domains, in ATP-dependent solute transport. We have mutated the glutamines at 713 and 1375 to asparagine, methionine or leucine to determine the functional roles of these residues in Q-loops of MRP1. All these single mutants significantly decreased Mg·ATP binding and increased the K(m) (Mg·ATP) and V(max) values in Mg·ATP-dependent leukotriene-C4 transport. However, the V(max) values of the double mutants Q713N/Q1375N, Q713M/Q1375M and Q713L/Q1375L were lower than that of wtMRP1, implying that the double mutants cannot efficiently bind Mg·ATP. Interestingly, MRP1 has higher affinity for Mn·ATP than for Mg·ATP and the Mn·ATP-dependent leukotriene-C4 transport activities of Q713N/Q1375N and Q713M/Q1375M are significantly higher than that of wtMRP1. All these results suggest that: 1) the glutamine residues in Q-loops contribute to ATP-binding via interaction with a metal cofactor; 2) it is most unlikely that these glutamine residues would play crucial roles in ATP hydrolysis and in transmitting the conformational changes between nucleotide-binding-domains and transmembrane-domains.


Asunto(s)
Adenosina Trifosfato/metabolismo , Resistencia a Múltiples Medicamentos , Glutamina/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Sitios de Unión , Línea Celular , Cartilla de ADN , Glutamina/química , Humanos , Hidrólisis , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/química , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Mutagénesis Sitio-Dirigida , Etiquetas de Fotoafinidad , Spodoptera
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...