Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Insects ; 14(5)2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37233056

RESUMEN

Tetranychus urticae Koch is a worldwide agricultural pest mite that feeds on more than 1100 kinds of crops. The mite has developed a high level of tolerance to high temperatures, but the physiological mechanism underlying the outstanding adaptability of this pest to high temperatures remains unclear. To clarify the physiological mechanisms of T. urticae in response to short-term heat stress, four temperatures (36, 39, 42, and 45 °C) and three short-term heat durations (2, 4, and 6 h) were conducted to test the effects on protein content, the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), and the total antioxidant capacity (T-AOC). The results showed that protein content, antioxidant enzyme activity, and T-AOC in T. urticae were significantly induced by heat stress. These results suggest that heat stress induces oxidative stress and that antioxidant enzymes play an important role in reducing oxidative damage in T. urticae. The data of this study will provide a basis for further research on the molecular mechanisms of thermostability and ecological adaptability of T. urticae.

2.
Mol Plant Microbe Interact ; 31(7): 724-736, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29424663

RESUMEN

Poplar, which is a dominant species in plant communities distributed in the northern hemisphere, is commonly used as a model plant in forestry studies. Poplar production can be inhibited by infections caused by bacteria, including Lonsdalea quercina subsp. populi, which is a gram-negative bacterium responsible for bark canker disease. However, the molecular basis of the pathogenesis remains uncharacterized. In this study, we annotated the two-component signal transduction systems (TCSs) encoded by the L. quercina subsp. populi N-5-1 genome and identified 18 putative histidine kinases and 24 response regulators. A large-scale mutational analysis revealed that 19 TCS genes regulated bacterial virulence against poplar trees. Additionally, the deletion of kdpE or overexpression of kdpD resulted in almost complete loss of bacterial virulence. We observed that kdpE and kdpD formed a bi-cistronic operon. KdpD exhibited autokinase activity and could bind to KdpE (Kd = 5.73 ± 0.64 µM). Furthermore, KdpE is an OmpR family response regulator. A chromatin immunoprecipitation sequencing analysis revealed that KdpE binds to an imperfect palindromic sequence within the promoters of 44 genes, including stress response genes Lqp0434, Lqp3037, and Lqp3270. A comprehensive analysis of TCS functions may help to characterize the regulation of poplar bark canker disease.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bacterias Gramnegativas/fisiología , Bacterias Gramnegativas/patogenicidad , Populus/microbiología , Transducción de Señal/fisiología , Proteínas Bacterianas/genética , Análisis Mutacional de ADN , ADN Bacteriano/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Bacterias Gramnegativas/genética , Enfermedades de las Plantas/microbiología , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...