Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Animals (Basel) ; 14(13)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38997985

RESUMEN

Prolactin (PRL) plays an important role in animal follicle development and ovulation. However, its regulatory effects on the different stages of the estrus cycle in ewes are unclear. In this study, bromocriptine (BCR, PRL inhibitor) was used to study the effect of PRL on the secretion of reproductive hormones and gene expressions in order to explore its regulatory effects on the sexual cycle of ewes. Eighty healthy ewes with the same parity and similar weights were randomly assigned to the control group (C, n = 40) and the treatment group (T, n = 40, fed bromocriptine). After estrus synchronization, thirty-one ewes with overt signs of estrus were selected from each group. Six blood samples were randomly obtained by jugular venipuncture to measure the concentration of PRL, estrogen (E2), progesterone (P4), luteinizing hormone (LH), follicle-stimulating hormone (FSH), and gonadotropin-releasing hormone (GnRH) in the proestrus, estrus, metestrus, and diestrus. At the same time, we collected the ovaries of the six ewes in vivo after anesthesia in order to detect follicle and corpus luteum (CL) counts and measure the expression of hormone-receptor and apoptosis-related genes. The results show that PRL inhibition had no significant effects on the length of the estrus cycle (p > 0.05). In proestrus, the number of large and small follicles, the levels of E2, FSH, and GnRH, and the expressions of ER, FSHR, and the apoptotic gene Caspase-3 were increased (p < 0.05); and the number of middle follicles and the expression of anti-apoptotic gene Bcl-2 were decreased (p < 0.05) in the T group. In estrus, the number of large follicles, the levels of E2 and GnRH, and the expressions of the StAR, CYP19A1, and Bcl-2 genes were increased (p < 0.05), and the number of middle follicles was decreased (p < 0.05) in the T group. In metestrus, the number of small follicles and the expression of LHR (p < 0.05) and the pro-apoptotic gene Bax were increased (p < 0.05); the number of middle follicles was decreased (p < 0.05) in the T group. In diestrus, the number of large follicles, middle follicles, and CL, the level of P4, and the expressions of PR, 3ß-HSD, StAR, Caspase-3, and Bax were increased (p < 0.05); the number of small follicles and the expression of Bcl-2 were decreased (p < 0.05) in the T group. In summary, PRL inhibition can affect the secretion of reproductive hormones, the follicle count, and the gene expression during the estrus cycle. These results provide a basis for understanding the mechanisms underlying the regulation of the ewe estrus cycle by PRL.

2.
Adv Sci (Weinh) ; 11(33): e2402464, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38952077

RESUMEN

Phase transitions are typically quantified using order parameters, such as crystal lattice distances and radial distribution functions, which can identify subtle changes in crystalline materials or high-contrast phases with large structural differences. However, the identification of phases with high complexity, multiscale organization and of complex patterns during the structural fluctuations preceding phase transitions, which are essential for understanding the system pathways between phases, is challenging for those traditional analyses. Here, it is shown that for two model systems- thermotropic liquid crystals and a lyotropic water/surfactant mixtures-graph theoretical (GT) descriptors can successfully identify complex phases combining molecular and nanoscale levels of organization that are hard to characterize with traditional methodologies. Furthermore, the GT descriptors also reveal the pathways between the different phases. Specifically, centrality parameters and node-based fractal dimension quantify the system behavior preceding the transitions, capturing fluctuation-induced breakup of aggregates and their long-range cooperative interactions. GT parameterization can be generalized for a wide range of chemical systems and be instrumental for the growth mechanisms of complex nanostructures.

3.
Anim Biosci ; 37(10): 1712-1725, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38665071

RESUMEN

OBJECTIVE: The objective of this study was to investigate the effects of prolactin (PRL) on the proliferation and apoptosis of ovine ovarian granulosa cells (GCs) and the secretion of estrogen (E2) and progesterone (P4), as well as to explore the effects of PRL on related genes and proteins. METHODS: We isolated ovarian GCs from 1-year-old small-tail Han sheep and identified PRL receptor (PRLR) on ovaries and follicle stimulating hormone receptor (FSHR) on ovarian GCs, respectively, using immunohistochemistry. PRL (0, 0.05, 0.50, 5.00 µg/mL) were added to GCs in vitro along with FSH, cell proliferation was measured by cell counting Kit-8 (CCK-8) and apoptosis by flow cytometry. The measurement of E2 and P4 content by enzyme-linked immunosorbent assays after 48 h and 72 h. The expression of functional genes and proteins was identified by real-time quantitative polymerase chain reaction (RTqPCR) and Western-blot after 48 h. RESULTS: PRLR was expressed in both follicular GCs and corpus luteum, whereas FSHR was expressed specifically. The proliferative activity was lower on day 1 while higher on day 4 and day 5. The apoptosis rate of GCs in the 0.05 µg/mL group was significantly higher than that in the control group after treatment with PRL for 24 h (p<0.05). Compared with the control group, the secretion of E2 in GCs was reduced significantly (p<0.05) in PRL treatment for 48 h and 72 h, while the secretion of P4 was significantly increased (p<0.05). The mRNA expression levels of PRLR, FSHR, LHR, CYP11A1, HSD3B7, and STAR were significantly higher than those in the control group (p<0.01), and the relative abundance of BCL2 in all PRL group were increased after PRL treatment. CONCLUSION: PRL promoted the proliferation of GCs and supraphysiological concentrations inhibited apoptosis caused by down-regulation of BAX and up-regulation of BCL2. PRL inhibited E2 by down-regulating CYP19A1 and promoted P4 by up-regulating CYP11A1, STAR, and HSD3B7.

4.
Int J Mol Sci ; 24(19)2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37833858

RESUMEN

High prolactin (PRL) concentration has been shown to induce the apoptosis of ovine ovarian granulosa cells (GCs), but the underlying mechanisms are unclear. This study aimed to investigate the mechanism of apoptosis induced by high PRL concentration in GCs. Trial 1: The optimal concentration of glutathion was determined according to the detected cell proliferation. The results showed that the optimal glutathione concentration was 5 µmol/mL. Trial 2: 500 ng/mL PRL was chosen as the high PRL concentration. The GCs were treated with 0 ng/mL PRL (C group), 500 ng/mL PRL (P group) or 500 ng/mL PRL, and 5 µmol/mL glutathione (P-GSH group). The results indicated that the mitochondrial respiratory chain complex (MRCC) I-V, ATP production, total antioxidant capacity (T-AOC), superoxide dismutase (SOD), and thioredoxin peroxidase (TPx) in the C group were higher than those in the P group (p < 0.05), while they were lower than those in the P-GSH group (p < 0.05). Compared to the C group, the P group exhibited elevated levels of reactive oxygen species (ROS) and apoptosis (p < 0.05) and increased expression of ATG7 and ATG5 (p < 0.05). However, MRCC I-V, ATP, SOD, A-TOC, TPx, ROS, and apoptosis were decreased after the addition of glutathione (p < 0.05). The knockdown of either L-PRLR or S-PRLR in P group GCs resulted in a significant reduction (p < 0.05) in MRCC I-V, ATP, T-AOC, SOD and TPx, while the overexpression of either receptor showed an opposite trend (p < 0.05). Our findings suggest that high PRL concentrations induce apoptotic cell death in ovine ovarian GCs by downregulating L-PRLR and S-PRLR, activating oxidative stress and autophagic pathways.


Asunto(s)
Prolactina , Receptores de Prolactina , Femenino , Animales , Ovinos , Prolactina/farmacología , Prolactina/metabolismo , Receptores de Prolactina/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo , Apoptosis , Antioxidantes/metabolismo , Células de la Granulosa/metabolismo , Glutatión/metabolismo , Superóxido Dismutasa/metabolismo , Adenosina Trifosfato/metabolismo
5.
PeerJ ; 11: e15629, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37456891

RESUMEN

Background: Prolactin (PRL) has been reported to be associated with oxidative stress, which is an important contributor leading to cell apoptosis. However, little is known about the mechanisms underlying the effects of PRL on cytotoxicity and oxidative stress in ovine ovarian granulosa cells (GCs). Methods: Ovine ovarian GCs were treated with 0, 4, 20, 100 and 500 ng/mL of PRL. Then, the cytotoxicity, cell viability, malondialdehyde (MDA), reactive oxygen species (ROS), superoxide dismutase (SOD) and total antioxidant capacity (T-AOC) of GCs were detected. Additionally, 500 ng/mL PRL was chosen as the high PRL concentration (HPC) due to its high cytotoxicity and oxidative stress. Proteomic and metabonomic were performed to examine the overall difference in proteins and metabolic pathways between C (control: 0 ng/mL PRL) and P groups (500 ng/mL PRL). Results: The results indicated that GCs treated with 4 ng/mL PRL significantly decreased (P < 0.05) the cytotoxicity, ROS and MDA, increased (P < 0.05) the cell viability, SOD and T-AOC, and the GCs treated with 500 ng/mL PRL showed the opposite trend (P < 0.05). Supplementation with 500 ng/mL PRL significantly increased the proteins of MT-ND1, MAPK12, UBA52 and BCL2L1, which were enriched in ROS and mitophagy pathways. Pathway enrichment analysis showed that the pentose phosphate pathway was significantly enriched in the P group. Conclusion: A low concentration of PRL inhibited cytotoxicity and oxidative stress. HPC induced oxidative stress in ovine ovarian GCs via the pentose phosphate pathway by modulating the associated proteins MT-ND1 in ROS pathway and UBA52, MAPK12 and BCL2L1 in mitophagy pathway, resulting in cytotoxicity.


Asunto(s)
Prolactina , Proteómica , Femenino , Ovinos , Animales , Especies Reactivas de Oxígeno/metabolismo , Prolactina/metabolismo , Estrés Oxidativo , Células de la Granulosa , Antioxidantes/metabolismo , Superóxido Dismutasa/metabolismo , Oveja Doméstica/metabolismo
6.
Int J Mol Sci ; 24(12)2023 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-37373417

RESUMEN

Prolactin (PRL) has been reported to influence reproductive performance and cell apoptosis. However, its mechanism remains unclear. Hence, in the present study, ovine ovarian granulosa cells (GCs) were used as a cell model to investigate the relationship between PRL concentration and GC apoptosis, as well as its possible mechanisms. We examined the relationship between serum PRL concentration and follicle counts in sexually mature ewes. GCs were isolated from adult ewes and treated with different concentrations of PRL, while 500 ng/mL PRL was selected as the high concentration of prolactin (HPC). Then, we applied the transcriptome sequencing (RNA-Seq) combined with a gene editing approach to explore the HPC contributing to cell apoptosis and steroid hormones. The apoptosis of GCs gradually increased at PRL concentrations above 20 ng/mL, while 500 ng/mL PRL significantly decreased the secretion of steroid hormones and the expression of L-PRLR and S-PRLR. The results indicated that PRL regulates GC development and steroid hormones mainly through the target gene MAPK12. The expression of MAPK12 was increased after knocked-down L-PRLR and S-PRLR, while it decreased after overexpressed L-PRLR and S-PRLR. Cell apoptosis was inhibited and the secretion of steroid hormones increased after interfering with MAPK12, while the overexpression of MAPK12 showed the opposite trend. Overall, the number of follicles gradually decreased with increasing PRL concentration. HPCs promoted apoptosis and inhibited steroid hormone secretion in GCs by upregulating MAPK12 through reducing L-PRLR and S-PRLR.


Asunto(s)
Prolactina , Receptores de Prolactina , Ovinos , Animales , Femenino , Prolactina/metabolismo , Receptores de Prolactina/genética , Ovario/metabolismo , Células de la Granulosa/metabolismo , Apoptosis/genética
7.
Soft Matter ; 19(26): 4954-4963, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37341985

RESUMEN

Inhomogeneous swelling of polymer films in liquid environments may find applications in soft actuators and sensors. Among them, fluoroelastomer based films bend up spontaneously once they are placed on an acetone-soaked filter paper. The stretchability and dielectric properties of a fluoroelastomer is attractive in the fields of soft actuators and sensors, making in-depth studies on and understanding of fluoroelastomer bending behaviors important. Here, we report an abnormal size-dependent bending phenomenon of rectangular fluoroelastomer films, which transform the bending direction from the long-side bending to the short-side bending as their length or width increases or the thickness decreases. By using finite element analysis and an analytical expression obtained using a bilayer model, we reveal the key role of gravity in determining the size-dependent bending behavior. In the bilayer model, an energy quantity is obtained to characterize the role of each material and geometrical parameters in determining the size-dependent bending behavior. We further construct phase diagrams to correlate the bending modes and the film sizes based on the finite element results, which are in good agreement with experimental results. These findings can be useful for the design of future swelling-based polymer actuators and sensors.

8.
Pharm Res ; 40(12): 2817-2845, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37052841

RESUMEN

PURPOSE: To understand how surfactants affect drug release from ternary amorphous solid dispersions (ASDs), and to investigate different mechanisms of release enhancement. METHODS: Ternary ASDs containing ritonavir (RTV), polyvinylpyrrolidone/vinyl acetate (PVPVA) and a surfactant (sodium dodecyl sulfate (SDS), Tween 80, Span 20 or Span 85) were prepared with rotary evaporation. Release profiles of ternary ASDs were measured with surface normalized dissolution. Phase separation morphologies of ASD compacts during hydration/dissolution were examined in real-time with a newly developed confocal fluorescence microscopy method. The water ingress rate of different formulations was measured with dynamic vapor sorption. Microscopy was employed to check for matrix crystallization during release studies. RESULTS: All surfactants improved drug release at 30% DL, while only SDS and Tween 80 improved drug release at higher DLs, although SDS promoted matrix crystallization. The dissolution rate of neat polymer increased when SDS and Tween 80 were present. The water ingress rate also increased in the presence of all surfactants. Surfactant-incorporation affected both the kinetic and thermodynamics factors governing phase separation of RTV-PVPVA-water system, modifying the phase morphology during ASD dissolution. Importantly, SDS increased the miscibility of RTV-PVPVA-water system, whereas other surfactants mainly affected the phase separation kinetics/drug-rich barrier persistence. CONCLUSION: Incorporation of surfactants enhanced drug release from RTV-PVPVA ASDs compared to the binary system. Increased drug-polymer-water miscibility and disruption of the drug-rich barrier at the gel-solvent interface via plasticization are highlighted as two key mechanisms underlying surfactant impacts based on direct visualization of the phase separation process upon hydration and release.


Asunto(s)
Polisorbatos , Tensoactivos , Liberación de Fármacos , Tensoactivos/química , Solubilidad , Ritonavir/química , Povidona , Polímeros/química , Composición de Medicamentos/métodos , Agua/química
9.
Anal Chem ; 95(4): 2192-2202, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36656303

RESUMEN

The use of periodically structured illumination coupled with spatial Fourier-transform fluorescence recovery after photobleaching (FT-FRAP) was shown to support diffusivity mapping within segmented domains of arbitrary shape. Periodic "comb-bleach" patterning of the excitation beam during photobleaching encoded spatial maps of diffusion onto harmonic peaks in the spatial Fourier transform. Diffusion manifests as a simple exponential decay of a given harmonic, improving the signal to noise ratio and simplifying mathematical analysis. Image segmentation prior to Fourier transformation was shown to support pooling for signal to noise enhancement for regions of arbitrary shape expected to exhibit similar diffusivity within a domain. Following proof-of-concept analyses based on simulations with known ground-truth maps, diffusion imaging by FT-FRAP was used to map spatially-resolved diffusion differences within phase-separated domains of model amorphous solid dispersion spin-cast thin films. Notably, multi-harmonic analysis by FT-FRAP was able to definitively discriminate and quantify the roles of internal diffusion and exchange to higher mobility interfacial layers in modeling the recovery kinetics within thin amorphous/amorphous phase-separated domains, with interfacial diffusion playing a critical role in recovery. These results have direct implications for the design of amorphous systems for stable storage and efficacious delivery of therapeutic molecules.

10.
J Pharm Sci ; 112(1): 304-317, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36306863

RESUMEN

Formulating poorly soluble molecules as amorphous solid dispersions (ASDs) is an effective strategy to improve drug release. However, drug release rate and extent tend to rapidly diminish with increasing drug loading (DL). The poor release at high DLs has been postulated to be linked to the process of amorphous-amorphous phase separation (AAPS), although the exact connection between phase separation and release properties remains somewhat unclear. Herein, release profiles of ASDs formulated with ritonavir (RTV) and polyvinylpyrrolidone/vinyl acetate (PVPVA) at different DLs were determined using surface normalized dissolution. Surface morphologies of partially dissolved ASD compacts were evaluated with confocal fluorescence microscopy, using Nile red and Alexa Fluor 488 as fluorescence markers to track the hydrophobic and hydrophilic phases respectively. ASD phase behavior during hydration and release of components were also visualized in real time using a newly developed in situ confocal fluorescence microscopy method. RTV-PVPVA ASDs showed complete and rapid drug release below 30% DL, partial drug release at 30% DL and no drug release above 30% DL. It was observed that formation of discrete drug-rich droplets at lower DLs led to rapid and congruent release of both drug and polymer, whereas formation of continuous drug-rich phase at the ASD matrix-solution interface was the cause of poor release above certain DLs. Thus, the domain size and interconnectivity of phase separated drug-rich domains appear to be critical factors impacting drug release from RTV-PVPVPA ASDs.


Asunto(s)
Polímeros , Pirrolidinas , Polímeros/química , Solubilidad , Pirrolidinas/química , Compuestos de Vinilo/química , Liberación de Fármacos , Ritonavir/química , Povidona/química
11.
Food Chem ; 396: 133683, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-35843001

RESUMEN

Polychlorinated biphenyls (PCBs) are persistent organic pollutants which are widely present in environment and harmful to human health. In this study, an efficient and convenient magnetic solid phase extraction method with C60 modified magnetic polyamido-amine (PAMAM) dendrimers as sorbents was established for enriching trace amounts of PCBs in beverage samples. Gas chromatography-tandem mass spectrometry (GC-MS/MS) was utilized for analysis of PCBs. Parameters affecting extraction efficiency were optimized. Under optimal parameters, good linearity can be achieved in concentration range of 0.001-20 µg L-1 and 0.002-20 µg L-1 for nine selected PCBs. The limits of detection for PCBs were in the range of 0.1-0.2 ng L-1. The spiked recoveries were in the range of 87.0 %-115.1 % (n = 3). The results proved that this established method was reliable for monitoring trace PCBs in beverage samples.


Asunto(s)
Dendrímeros , Bifenilos Policlorados , Aminas/análisis , Bebidas/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Humanos , Fenómenos Magnéticos , Bifenilos Policlorados/análisis , Extracción en Fase Sólida/métodos , Espectrometría de Masas en Tándem/métodos
12.
Chemosphere ; 302: 134928, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35561760

RESUMEN

Polyaniline (PANI) is a useful conductive polymer material, and has good adsorption property, which makes it a good modification material. In this work, for the sake of highly enhancing the utilization of visible region in sunlight and accelerating photocatalytic degradation of tetrabromobisphenol A (TBBPA), a typical polybrominated flame retardant, titanium dioxide nanotube arrays (TiO2 NTAs) were modified with PANI by chemical and electrochemical polymerization. The coated amount of PANI was controlled via adjusting the polymerization time and the amount of aniline in the electrochemical method. The results demonstrate that the EC-PANI/TiO2 NTAs (synthesized electrochemically) exhibit higher catalytic activity than bare TiO2 NTAs and C-PANI/TiO2 NTAs (synthesized chemically) in photoelectrocatalytic degradation of TBBPA under visible light, and the degradation efficiency for TBBPA could reach 94.37% within 120 min. The improved performance was contributed to the synergetic effect of PANI modification which integrated the broad absorption of PANI in visible light region and high catalytic property of TiO2 NTAs. Interestingly, it was also found that the degradation efficiency of TBBPA by EC-PANI/TiO2 was further enhanced by up to 95.74% when the ethanol was present in the reaction system as the hole scavenger. Furthermore, the EC-PANI/TiO2 exhibited excellent stability after 10 cycling experiments. All the results indicated that this new modified material presented strong potential as a photoelectrocatalyst and had great practical applications in the future.

13.
Int J Mol Sci ; 23(9)2022 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-35563579

RESUMEN

Short-term dietary supplementation of ewes during the luteal phase can increase fertility, most probably by stimulating glucose uptake by the follicles. However, the molecular mechanism of glucose regulation of follicular development has not yet been clarified, especially the further study of long non-coding RNA (lncRNA) in determining fertility during follicular development. We generated granulosa cell (GC) models of different doses of glucose (0, 2.1, 4.2, 8.4, 16.8 and 33.6 mM), and observed that the highest cell viability was recorded in the 8.4 mM group and the highest apoptosis rates were recorded in the 33.6 mM group. Therefore, a control group (n = 3, 0 mM glucose), a low glucose group (n = 3, add 8.4 mM glucose), and a high glucose group (n = 3, add 33.6 mM glucose) of GCs were created for next whole genomic RNA sequencing. In total, 18,172 novel lncRNAs and 510 annotated lncRNAs were identified in the GCs samples. Gene Ontology indicated that differentially expressed lncRNAs associated with cell apoptosis were highly enriched. Kyoto Encyclopedia of Genes and Genomes enrichment analysis of lncRNA target genes found that the apoptosis pathway and the p53 signaling pathway were both enriched. Furthermore, we focused on the function of a lncGDAR and verified that lncGDAR could influence cell apoptosis in GC development through affecting the mRNA and protein expression of apoptosis-related markers. These results provide the basis for further study of the lncRNA regulation mechanism in nutrition on female fertility.


Asunto(s)
ARN Largo no Codificante , Animales , Apoptosis/genética , Femenino , Perfilación de la Expresión Génica , Glucosa/metabolismo , Células de la Granulosa/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN Mensajero/genética , Ovinos/genética
14.
Int J Pharm ; 619: 121708, 2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35364219

RESUMEN

Amorphous-amorphous phase separation (AAPS) is an important phase transition process for amorphous solid dispersion (ASD) performance both in terms of drug release as well as physical and chemical stability during storage. Addition of surfactants to ASD systems can impact both of these processes. One possible mechanism through which surfactants affect ASD performance is via their impact on AAPS. Unfortunately, despite their increasing usage in ASD formulations, the effect of surfactant on AAPS is still poorly understood, and there are limited analytical techniques that provide microstructural and composition information about phase separated ASDs. In this study, the impact of four surfactants (sodium dodecyl sulfate, Tween 80, Span 20 and Span 85) on water-induced phase separation in ASDs formulated with ritonavir and polyvinylpyrrolidone/vinyl acetate (PVPVA) was investigated using a variety of orthogonal analytical methods. Transparent films of ASDs with different compositions were prepared by spin coating. Fluorescence confocal microscopy in combination with an in situ humidity chamber was used to monitor the kinetics and morphology of phase separation following exposure to high relative humidity. Optical photothermal IR analysis of phase separated films enabled characterization of domain composition and surfactant distribution. Liquid-liquid phase separation concentration, zeta potential and solution nuclear magnetic resonance spectroscopy measurements enabled interpretation of interaction with and partition of surfactants into the drug-rich phase. It was found that phase separation kinetics and morphology were notably changed by the surfactants. Further, the surfactants showed different affinities for the drug-rich versus the aqueous/polymer-rich phases. The employed analytical techniques were found to be complementary in providing insight into surfactant location in phase separated systems. This study highlights the complexity of phase separation, especially in the presence of surfactants, and provides a foundation to understand the impact of AAPS on ASD performance.


Asunto(s)
Pirrolidinas , Tensoactivos , Liberación de Fármacos , Excipientes/química , Pirrolidinas/química , Solubilidad , Tensoactivos/química , Agua/química
15.
Chemosphere ; 297: 134185, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35257709

RESUMEN

Polychlorinated biphenyls (PCBs) are a kind of hazardous persistent organic contaminants and widely present in nature due to large consumption in the past. Although PCBs have been banned in many countries of the world, they are still present at trace level in food and water samples. It is of significant value to establish reliable enrichment and detection method. Based on the conversion of the hydrophilicity and hydrophobicity from heptanoic acid under alkali and acid, increasing the contact area between heptanoic acid and PCBs, a new switchable solvent micro-extraction method for PCBs from beverages was developed with good extraction efficiency using heptanoic acid as the extractant prior to gas chromatography-tandem mass spectrometry (GC-MS/MS). The key parameters that had impact on enrichment of PCBs were investigated in detail. Under the optimal conditions, a good linearity can be achieved in a concentration range of 0.01-20 µg L-1 with the correlation coefficients of 0.9978-0.9994. Limits of detection for PCB28, PCB53, PCB206 were 3 ng L-1 and PCB118 was 5 ng L-1 while other target PCBs were 2 ng L-1. Intra-day and inter-day precisions were in the range of 1.9-4.2% and 2.1-4.2%(relative standard deviation, RSD, n = 6), respectively. The real sample spiked recoveries of the targets were in the range of 93.2-114.3% (n = 3). The enrichment factors were in the range of 16.2-17.9. The results proved that this method was reliable for monitoring trace PCBs in beverage samples and will help for future assessments of impacts on human and animal health.


Asunto(s)
Bifenilos Policlorados , Animales , Bebidas/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Bifenilos Policlorados/análisis , Solventes/análisis , Espectrometría de Masas en Tándem
16.
PeerJ ; 9: e11868, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34395094

RESUMEN

Few studies on mRNA expression of the prolactin receptor (PRLR) isoforms in different tissues of sheep were reported. The objective of this study was to analyze the gene sequence and mRNA expression of PRLR isoforms in the uterus, mammary gland, ovary, spleen and lymph tissue of ewes during the lactation and post-weaning periods. Ten lactating crossbred ewes (Dorper×Hu sheep) with twin lambs were used in this study. Five ewes were chosen randomly and slaughtered at mid-lactation (35 days after lambing). The remaining five ewes were slaughtered on the 5th day after weaning. Samples of uterus, mammary gland, ovary, spleen and lymph tissue were collected from each ewe to determine the mRNA expression of long PRLR (L-PRLR) and short PRLR (S-PRLR) by RT-qPCR. The physical and chemical properties, the similarity of the nucleotides L-PRLR and S-PRLR genes and the secondary and tertiary structure of the L-PRLR and S-PRLR proteins of sheep were analyzed. The results indicated that the predicted protein molecular weights of L-PRLR and S-PRLR are 65235.36 KD and 33847.48 KD, respectively, with isoelectric points of 5.12 and 8.34, respectively. The secondary protein structures of L-PRLR and S-PRLR are different. For L-PRLR these include alpha helix, extended strand and random coils and ß-turns for which the content was 16.01%, 21%, 59.55% and 3.44%, respectively, whereas the secondary protein structures of S-PRLR contain only alpha helices, extended strand and random coils, comprising 18.24%, 30.07% and 48.99%, respectively. The L-PRLR and S-PRLR genes of the sheep (Ovis aries) had nucleotide sequences showing much similarity among ruminants. In these sheep, mRNA expression of L-PRLR and S-PRLR was highest in the uterus and differed between the uterus, ovary, mammary gland, spleen and lymph tissue. The mRNA expression of L-PRLR in lymph tissue was higher during lactation than in the post-weaning period (P < 0.01), whereas mRNA expression of S-PRLR in the uterus and the mammary gland was lower during lactation than during the post-weaning period (P < 0.01). In the uterus, mRNA expression of L-PRLR was higher than that of S-PRLR during lactation (P < 0.01) but there were no significant differences (P < 0.05) for the other five tissues. This study that the L-PRLR and S-PRLR proteins in ewes are mainly composed of extended fragments and random coils. The data also indicate that mRNA expression of L-PRLR and S-PRLR genes varies among different tissues in sheep and is higher in the uterus than in the ovary, spleen, mammary gland and lymph tissue throughout lactation and the post-weaning period.

17.
J Am Chem Soc ; 143(29): 10809-10815, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-34270255

RESUMEN

We demonstrate instrumentation and methods to enable fluorescence-detected photothermal infrared (F-PTIR) microscopy and then demonstrate the utility of F-PTIR to characterize the composition within phase-separated domains of model amorphous solid dispersions (ASDs) induced by water sorption. In F-PTIR, temperature-dependent changes in fluorescence quantum efficiency are shown to sensitively report on highly localized absorption of mid-infrared radiation. The spatial resolution with which infrared spectroscopy can be performed is dictated by fluorescence microscopy, rather than the infrared wavelength. Intrinsic ultraviolet autofluorescence of tryptophan and protein microparticles enabled label-free F-PTIR microscopy. Following proof of concept F-PTIR demonstration on model systems of polyethylene glycol (PEG) and silica gel, F-PTIR enabled the characterization of chemical composition within inhomogeneous ritonavir/polyvinylpyrrolidone-vinyl acetate (PVPVA) amorphous dispersions. Phase separation is implicated in the observation of critical behaviors in ASD dissolution kinetics, with the results of F-PTIR supporting the formation of phase-separated drug-rich domains upon water sorption in spin-cast films.


Asunto(s)
Fluorescencia , Polietilenglicoles/química , Povidona/química , Ritonavir/química , Dióxido de Silicio/química , Compuestos de Vinilo/química , Geles/química , Cinética , Microscopía Fluorescente , Espectrofotometría Infrarroja , Temperatura
18.
Mol Pharm ; 18(5): 2066-2081, 2021 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-33784104

RESUMEN

Dissolution of amorphous solid dispersions (ASD) can lead to the formation of amorphous drug-rich nano species (nanodroplets) via liquid-liquid phase separation or glass-liquid phase separation when the drug concentration exceeds the amorphous solubility. These nanodroplets have been shown to be beneficial for ASD performance both in vitro and in vivo. Thus, understanding the generation and stability of nanodroplets from ASD formulations is important. In this study, the impacts of polymer selection and active pharmaceutical ingredient (API) physicochemical properties (wet glass transition temperature (Tg) and log P) on nanodroplet release were studied. Six APIs with different physicochemical properties were formulated as ASDs with two polymers, polyvinylpyrrolidone/vinyl acetate (PVPVA) and hydroxypropyl methylcellulose acetate succinate (HPMCAS). Their release performance was evaluated using both powder and surface normalized dissolution of compacts. In general, HPMCAS-based dispersions resulted in higher drug release compared to PVPVA-based dispersions. The two polymers also exhibited different trends in nanodroplet formation as a function of drug loading (DL). PVPVA ASDs exhibited a "falling-off-the-cliff" effect, with a dramatic decline in release performance with a small increase in drug loading, while HPMCAS ASDs exhibited a negative "slope" in the release rate as a function of drug loading. For both polymers, low Tg compounds achieved higher levels of nanodroplet formation compared to high Tg compounds. The nanodroplets generated from ASD dissolution were also monitored with dynamic light scattering, and HPMCAS was found to be more effective at stabilizing nanodroplets against size increase. Insights from this study may be used to guide formulation design and selection of excipients based on API physicochemical properties.


Asunto(s)
Excipientes/química , Preparaciones Farmacéuticas/química , Química Farmacéutica , Cristalización , Composición de Medicamentos/métodos , Liberación de Fármacos , Metilcelulosa/análogos & derivados , Metilcelulosa/química , Nanopartículas/química , Pirrolidinas/química , Solubilidad , Temperatura de Transición , Compuestos de Vinilo/química
19.
Sheng Wu Gong Cheng Xue Bao ; 36(9): 1817-1827, 2020 Sep 25.
Artículo en Chino | MEDLINE | ID: mdl-33164458

RESUMEN

In order to clarify the regulation of granule cell stimulating factor (GCSF) on granulosa cells, we studied the effect of GCSF on proliferation and apoptosis of in vitro cultured granulosa cells for research on GCSF used in sheep reproduction and breeding. Sheep GCSF protein was prokaryotic expressed and purified. Its bio-activity was measured with M-NSF60 cells. The purified GCSF was added in cell culture medium in experiment groups with non-added as control. Alarmarblue was used to measure cell proliferation, and flow cytometry was used to detect cell cycles and apoptosis. Sheep GCSF could be expressed and purified. Cell activity increased with GCSF concentration from 0.06 to 600 ng/mL at 24 h and 48 h. Cell cycles were significantly different between experiment and control groups at 24 h. Cell ratio of S was significantly reduced (P<0.05) and G2/M phase significantly increased (P<0.05). The apoptosis ratio of experiment group was significantly reduced (P<0.05) at 48 h. In conclusion, GCSF could enhance cell proliferation, inhibit apoptosis, and regulate cell cycles on in vitro cultured sheep granulosa cells.


Asunto(s)
Factor Estimulante de Colonias de Granulocitos , Células de la Granulosa , Animales , Proliferación Celular , Femenino , Ovinos
20.
Sci Rep ; 10(1): 5541, 2020 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-32218468

RESUMEN

Mathematical modelling of real complex networks aims to characterize their architecture and decipher their underlying principles. Self-repeating patterns and multifractality exist in many real-world complex systems such as brain, genetic, geoscience, and social networks. To better comprehend the multifractal behavior in the real networks, we propose the weighted multifractal graph model to characterize the spatiotemporal complexity and heterogeneity encoded in the interaction weights. We provide analytical tools to verify the multifractal properties of the proposed model. By varying the parameters in the initial unit square, the model can reproduce a diverse range of multifractal spectrums with different degrees of symmetry, locations, support and shapes. We estimate and investigate the weighted multifractal graph model corresponding to two real-world complex systems, namely (i) the chromosome interactions of yeast cells in quiescence and in exponential growth, and (ii) the brain networks of cognitively healthy people and patients exhibiting late mild cognitive impairment leading to Alzheimer disease. The analysis of recovered models show that the proposed random graph model provides a novel way to understand the self-similar structure of complex networks and to discriminate different network structures. Additionally, by mapping real complex networks onto multifractal generating measures, it allows us to develop new network design and control strategies, such as the minimal control of multifractal measures of real systems under different functioning conditions or states.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...