Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 144(34): 15727-15734, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35981404

RESUMEN

Creation of strong and tough plastics from sustainable and biorenewable resources is a significant challenge in polymer science. This challenge is further complicated when attempting to make these materials using an economically viable process, which is often hindered by the production and availability of chemical feedstocks and the efficiency of the monomer synthesis. Herein, we report the synthesis and characterization of a strong thermoplastic made from 2,3-dihydrofuran (DHF), a monomer made in one step from 1,4-butanediol, a bioalcohol already produced on the plant scale. We developed a green, metal-free cationic polymerization to enable the production of poly(2,3-dihydrofuran) (PDHF) with molecular weights of up to 256 kg/mol at room temperature. Characterization of these polymers showed that PDHF possesses high tensile strength and toughness (70 and 14 MPa, respectively) comparable to commercial polycarbonate, high optical clarity, and good barrier properties to oxygen, carbon dioxide, and water. These properties make this material amenable to a variety of applications, from food packaging to high strength windows. Importantly, we have also developed a facile oxidative degradation process of PDHF, providing an end-of-life solution for PDHF materials.


Asunto(s)
Furanos , Polímeros , Cationes , Plásticos , Polimerizacion , Polímeros/química , Temperatura
2.
Int J Biol Macromol ; 138: 37-48, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31295491

RESUMEN

Evidence suggests that amyloid fibril mitigation/inhibition is considered a promising approach toward treating amyloid diseases. In this work, we first examined how amyloid fibrillogenesis of lysozyme was affected by BBG, a safe triphenylmethane compound with nice blood-brain-barrier-permeability, and found that shorter fibrillar species were formed in the lysozyme samples treated with BBG. Next, alterations in the features including the secondary as well as tertiary structure, extent of aggregation, and molecular distribution of lysozyme triggered by the addition of BBG were examined by various spectroscopic techniques, right-angle light scattering, dynamic light scattering, and SDS-PAGE. In addition, we have investigated how BBG affected the lysozyme fibril-induced cytotoxicity in SH-SY5Y cells. We found that a large quantity of shorter fibrillar species and more lysozyme monomers were present in the samples treated with BBG. Also, the addition of BBG rescued SH-SY5Y cells from cell death induced by amyloid fibrils of lysozyme. Finally, information about the binding sites and interacting forces involved in the BBG-lysozyme interaction was further explored using synchronous fluorescence and molecular docking approaches. Molecular docking results revealed that, apart from the hydrophobic interaction(s), hydrogen bonding, electrostatic interactions, and van der Waal forces may also be involved in the binding interaction.


Asunto(s)
Amiloide/química , Muramidasa/química , Agregado de Proteínas/efectos de los fármacos , Colorantes de Rosanilina/farmacología , Amiloide/toxicidad , Sitios de Unión , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Simulación del Acoplamiento Molecular , Muramidasa/toxicidad , Conformación Proteica
3.
Food Technol Biotechnol ; 56(1): 40-50, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29795995

RESUMEN

Polyacrylonitrile (PAN) nanofibrous membrane was prepared by an electrospinning technique. After heat treatment and alkaline hydrolysis, the weak ion exchange membrane was grafted with chitosan molecule and then covalently immobilized with a Cibacron Blue F3GA (CB). Fibre diameter, porosity and pore size of the membrane and immobilized dye density were characterized. Furthermore, the membrane was applied to evaluate the binding performance of lysozyme under various operating parameters (pH, chitosan mass per volume ratio, dye concentration, ionic strength and temperature) in batch mode. The experimental results were directly applied to purify lysozyme from chicken egg white by membrane chromatography. The results showed that the capture efficiency, recovery yield and purification factor were 90 and 87%, and 47-fold, respectively, in a single step. The binding capacity remained consistent after five repeated cycles of adsorption-desorption operations. This work demonstrates that the dye-affinity nanofibrous membrane holds great potential for purification of lysozyme from real feedstock.

4.
Food Funct ; 7(12): 4898-4907, 2016 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-27824368

RESUMEN

More than thirty human proteins and/or peptides can fold incorrectly to form amyloid deposits associated with several protein aggregation diseases. No cure is currently available for treating these diseases. This work is aimed at examining the inhibitory potency of fast green FCF, a biocompatible dye, toward the fibrillogenesis/aggregation of lysozyme. As verified by ThT binding assay along with transmission electron microscopy, fast green FCF was observed to suppress the generation of lysozyme fibrils in a concentration-dependent manner. We next used circular dichroism absorption spectroscopy, ANS fluorescence spectroscopy, and SDS-PAGE to characterize the structural alterations in lysozyme samples upon the addition of fast green FCF. Furthermore, experiments with the addition of fast green FCF at different time points of incubation showed that fast green FCF also exhibited disaggregating activity against the preformed/existing lysozyme fibrils. We believe that the results from this study suggest a potential therapeutic role of biocompatible molecules in treating or preventing protein aggregation diseases.


Asunto(s)
Amiloide/química , Colorantes Verde de Lisamina/farmacología , Muramidasa/química , Animales , Benzotiazoles , Pollos , Dicroismo Circular , Clara de Huevo , Concentración de Iones de Hidrógeno , Colorantes Verde de Lisamina/química , Tiazoles/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA