Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 15: 1413650, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39113838

RESUMEN

Non-Saccharomyces yeasts have great potential in improving wine quality, showing personality characteristics, and highlighting the terroir of wine. In this study, we evaluated the impact of simultaneous inoculation with the non-Saccharomyces yeasts Torulaspora delbrueckii or (and) Hanseniaspora uvarum in combination with Saccharomyces cerevisiae (EC1118 or VL3) on the aromatic compounds and sensory quality of Sauvignon blanc wines. The growth of yeast groups in the alcoholic fermentation process was tracked using fluorescence in situ hybridization. The presence of non-Saccharomyces yeast notably impacted the distribution of S. cerevisiae and was related to the species of yeast. The co-fermentation of H. uvarum and S. cerevisiae improved the content of total esters, especially acetate esters. Simultaneous inoculation of T. delbrueckii or (and) H. uvarum significantly increased the content of total terpenes, especially linalool. Similar results were found for some higher alcohols and organic acids. Sensory evaluation showed that the wines mixed fermentation with H. uvarum had significantly tropical fruit aroma characteristics. Citrus and mineral notes, typical aroma characteristics of Sauvignon blanc wine, were enhanced by mixed fermentation strategies with T. delbrueckii or (and) H. uvarum and different S. cerevisiae. Hence, co-fermentation by T. delbrueckii or H. uvarum combined with S. cerevisiae could significantly improve the sensory quality of Sauvignon blanc wine.

2.
Heliyon ; 10(9): e30901, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38774103

RESUMEN

Recent advances have revealed that the role of the immune system is prominent in the antitumor response. In the present study, it is aimed to provide an expression profile of tumor-infiltrating lymphocytes (TILs), including mature B cells, plasma cells, and their clinical relevance in neuroblastoma. The expression of CD20 and CD138 was analyzed in the Cangelosi786 dataset (n = 769) as a training dataset and in our cohort (n = 120) as a validation cohort. CD20 high expression was positively associated with favorable overall survival (OS) and event-free survival (EFS) (OS: P < 0.001; EFS: P < 0.001) in the training dataset, whereas CD138 high expression was associated with poor OS and EFS (OS: P < 0.001; EFS: P < 0.001) in both the training and validation datasets. Accordingly, a combined pattern of CD20 and CD138 expression was developed, whereby neuroblastoma patients with CD20highCD138low expression had a consistently favorable OS and EFS compared with those with CD20lowCD138high expression in both the training and validation cohorts (P < 0.0001 and P < 0.01, respectively). Examination of potential molecular functions revealed that signaling pathways, including cytokine‒cytokine receptor interactions, chemokine, and the NF-kappa B signaling pathways, were involved. Differentially expressed genes, such as BMP7, IL7R, BIRC3, CCR7, CXCR5, CCL21, and CCL19, predominantly play important roles in predicting the survival of neuroblastoma patients. Our study proposes that a new combination of CD20 and CD138 signatures is associated with neuroblastoma patient survival. The related signaling pathways reflect the close associations among the number of TILs, cytokine abundance and patient outcomes and provide therapeutic insights into neuroblastoma.

3.
Pharmaceutics ; 16(4)2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38675199

RESUMEN

The improvement of the capability of poly(N-isopropylacrylamide) (PNIPAAm) hydrogel coating in cell adhesion and detachment is critical to efficiently prepare cell sheets applied in cellular therapies and tissue engineering. To enhance cell response on the surface, the amine group-modified PNIPAAm (PNIPAAm-APTES) nanohydrogels were synthesized and deposited spontaneously on tannic acid (TA)-modified polyethylene (PE) plates. Subsequently, TA was introduced onto PNIPAAm-APTES nanohydrogels to fabricate coatings composed of TA-modified PNIPAAm-APTES (PNIPAAm-APTES-TA). Characterization techniques, including TEM, SEM, XPS, and UV-Vis spectroscopy, confirmed the effective deposition of hydrogels of PNIPAAm as well as the morphologies, content of chemical bonding-TA, and stability of various coatings. Importantly, the porous hydrogel coatings exhibited superhydrophilicity at 20 °C and thermo-responsive behavior. The fluorescence measurement demonstrated that the coating's stability effectively regulated protein behavior, influencing cell response. Notably, cell response tests revealed that even without precise control over the chain length/thickness of PNIPAAm during synthesis, the coatings enhanced cell adhesion and detachment, facilitating efficient cell culture. This work represented a novel and facile approach to preparing bioactive PNIPAAm for cell culture.

4.
J Sci Food Agric ; 104(2): 686-697, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-37654243

RESUMEN

BACKGROUND: Ethanol and osmotic stresses are the major limiting factors for brewing strong beer with high-gravity wort. Breeding of yeast strains with high osmotic and ethanol tolerance and studying very-high-gravity (VHG) brewing technology is of great significance for brewing strong beer. RESULTS: This study used an optimized microbial microdroplet culture (MMC) system for adaptive laboratory evolution (ALE) of Saccharomyces cerevisiae YN81 to improve its tolerance to osmotic and ethanol stress. Meanwhile, we investigated the VHG and VHG with added ethanol (VHGAE) brewing processes for the evolved mutants in brewing strong beer. The results showed that three evolved mutants were obtained; among them, the growth performance of YN81mc-8.3 under 300, 340, 380, 420 and 460 g L-1 sucrose stresses was greater than that of the other strains. The ethanol tolerance of YN81mc-8.3 was 12%, which was 20% higher than that of YN81. During strong-beer brewing in a 100 L cylindrical cone-bottom tank, the sugar utilization and ethanol yield of YN81mc-8.3 outperformed those of YN81 in both the VHG and VHGAE brewing processes. Measurement of the diacetyl concentration showed that YN81mc-8.3 had a stronger diacetyl reduction ability; in particular, the real degree of fermentation of beers brewed by YN81mc-8.3 in VHG and VHGAE brewing processes was 75.35% and 66.71%, respectively - higher than those of the two samples brewed by YN81. Meanwhile, the visual, olfactive and gustative properties of the strong beer produced by YN81mc-8.3 were better than those of the other beers. CONCLUSION: In this study, the mutant YN81mc-8.3 and the VHGAE brewing process were optimal and represented a better alternative strong-beer brewing process. © 2023 Society of Chemical Industry.


Asunto(s)
Diacetil , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Fitomejoramiento , Fermentación , Etanol , Cerveza
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...