Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biomacromolecules ; 24(9): 4138-4147, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37640397

RESUMEN

Small-diameter artificial blood vessels are increasingly being used in clinical practice. However, these vessels are prone to thrombus, and it is necessary to improve blood compatibility. Surface coating is one of the commonly used methods in this regard. Inspired by the biomimicry of mussels, the use of deposition technology to obtain coating coverage on the surface of fibers has significantly piqued the interest of researchers recently. In this study, tubular scaffolds consisting of a composite of poly(caprolactone), cellulose acetate, and tannic acid (TA) were electrospun, and then the scaffolds were treated with different Fe(III) solutions (iron(III) chloride hexahydrate (FeCl3'6H2O)) to obtain four tubular scaffolds: F0, F5, F15, and F45. According to scanning electron microscopy (SEM) and field emission-SEM results, TA/Fe(III) complex is coated on the fiber of the scaffold after post-treatment; the fiber surface morphology changes with different Fe(III) concentrations. This provides designability to the performance of tubular scaffolds. The tensile strength of the F5 tubular scaffold (3.33 MPa) is higher than that of F45 (3.14 MPa), while the strain (83.9%) of the F45 tubular stent was 2.26 times that of the F5 (37.2%). In addition, cytotoxicity and antithrombotic performance were evaluated. The test results show that surface TA/Fe(III) coating treatment can affect the cytotoxicity and anticoagulation performance of the scaffold surface. The biomimetic TA/Fe(III) coating of mussels used in this study improves the performance of artificial blood vessels.


Asunto(s)
Sustitutos Sanguíneos , Compuestos Férricos , Poli A
2.
Zhen Ci Yan Jiu ; 45(5): 426-31, 2020 May 25.
Artículo en Chino | MEDLINE | ID: mdl-32447861

RESUMEN

Alzheimer's disease (AD), a neurodegenerative disorder characterized by amyloid deposits and neurofibrillary degeneration, is the most common type of dementia and has no incurable therapies at the moment. Electroacupuncture (EA) therapy has been widely used in clinical treatment of AD, and has attained approving effects. This article reviews the development of researches on the mechanisms of EA underlying improving AD by diminishing ß amyloid protein (Aß) neurotoxicity, from 1) up-regulating hippocampal cellular autophagy, 2) improving cerebral energy metabolism by activating oxidation stress-related factors peroxisome proliferator-activated receptor γ coactivator 1 alpha and sirtuin 1 in the hippocampus and frontal cerebral cortex, 3) relieving inflammatory reaction by lowering expression of tumor necrosis factor-alpha and high-mobility group box 1 and increasing expression of Interleukin 10, and 4) promoting degradation of Aß1-42 by down-regulating expression of insulin degeneration enzyme, lipoprotein, transthyretin, apolipoprotein and α2 mcroglobulin. Meanwhile, a comprehensive clinical therapy of AD is proposed.


Asunto(s)
Enfermedad de Alzheimer , Electroacupuntura , Enfermedad de Alzheimer/terapia , Péptidos beta-Amiloides , Hipocampo , Humanos , Placa Amiloide
3.
Zhongguo Zhen Jiu ; 40(1): 68-74, 2020 Jan 12.
Artículo en Chino | MEDLINE | ID: mdl-31930902

RESUMEN

OBJECTIVE: To explore the effect of early intervention electroacupuncture (EA) at "Baihui" (GV 20), "Dazhui" (GV 14) and "Shenshu" (BL 23) on the learning-memory ability and the expression of phosphorylated Tau protein in the hippocampus of SAMP8 mice, so as to provide reference for the intervening period of EA for Alzheimer's disease (AD). METHODS: A total of 36 3-month old SAMP8 mice were randomly divided into a model group, a 3-month-old EA group and a 9-month-old EA group, 12 mice in each group. Twelve normal SAMR1 mice with the same age were taken as the control group. The mice in the 3-month-old EA group and 9-month-old EA group were treated with EA at "Baihui" (GV 20), "Dazhui" (GV 14) and "Shenshu" (BL 23) separately 3 months old and 9 months old (continuous wave, 2 Hz, 1.5-2 mA), 20 min each time, once a day, 8 days as a course of treatment, with an interval of 2 days between courses, totally 3 courses of treatment were given. The mice sample in each group was collected at the age of 10 months after the learning-memory ability tested by Morris water maze. The expression of phosphorylated Tau protein in the hippocampus was detected by immunohistochemistry and Western blot, and the expression of Tau mRNA was detected by real-time PCR. RESULTS: Compared with the control group, in the model group, the escape latency was significantly increased (P<0.01), the time of stay in the original platform quadrant and the number of crossing the platform quadrant were reduced (P<0.01), and the expressions of phosphorylated Tau protein and Tau mRNA in hippocampus were increased (P<0.01). Compared with the model group, in the 3-month-old EA group and 9-month-old EA group, the escape latency was significantly reduced (P<0.05), the time of stay in the original platform quadrant and the number of crossing the platform quadrant were increased (P<0.05), and the expressions of phosphorylated Tau protein and Tau mRNA in hippocampus were reduced (P<0.05). Compared with the 9-month-old EA group, in the 3-month-old EA group, the escape latency was significantly reduced (P<0.05), the time of stay in the original platform quadrant and the number of crossing the platform quadrant were increased (P<0.05), and the expressions of phosphorylated Tau protein and Tau mRNA were reduced (P<0.01). CONCLUSION: The early EA intervention could more effectively improve the learning-memory ability and inhibit phosphorylation of Tau protein in the hippocampus of SAMP8 mice.


Asunto(s)
Electroacupuntura , Animales , Modelos Animales de Enfermedad , Hipocampo , Aprendizaje , Memoria , Ratones , Proteínas tau
4.
Artículo en Inglés | MEDLINE | ID: mdl-31641367

RESUMEN

Synaptic loss and dysfunction is associated with cognitive impairment in Alzheimer's disease (AD). Recent evidence indicates that the AMP-activated protein kinase (AMPK)/eukaryotic elongation factor-2 kinase (eEF2K)/eukaryotic elongation factor-2 (eEF2) pathway was implicated in synaptic plasticity in AD. Therapeutic strategies for AD treatment are currently limited. Here, we investigate the effects of electroacupuncture (EA) on synaptic function and the AMPK/eEF2K/eEF2 signaling pathway in male senescence-accelerated mouse-prone 8 (SAMP8) mice. Male 7-month-old SAMP8 and SAMR1 mice (senescence-accelerated mouse resistant 1) were randomly divided into 3 groups: SAMR1 control group (Rc), SAMP8 control group (Pc), and SAMP8 electroacupuncture group (Pe). The Pe group was treated with EA for 30 days. Transmission electron microscopy (TEM) was used to observe the structure of synapse. The protein and mRNA expression of synaptophysin (SYN) and postsynaptic density 95 (PSD95) was examined by immunohistochemistry, western blot, and real-time RT-PCR. The activity of AMPK and eEF2K was studied by western blot. Our results showed that EA ameliorated synaptic loss, increased the expression of SYN and PSD95, and inhibited AMPK activation and eEF2K activity. Collectively, these findings suggested that the mechanisms of EA improving synaptic function in AD may be associated with the inhibition of the AMPK/eEF2K/eEF2 signaling pathway.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...