Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 561
Filtrar
1.
Ecotoxicol Environ Saf ; 283: 116833, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39128446

RESUMEN

Arsenic, a neurotoxic metalloid, poses significant health risks. However, ellagic acid, renowned for its antioxidant properties, has shown potential in neuroprotection. This study aimed to investigate the neuroprotective effects of ellagic acid against arsenic-induced neuronal ferroptosis and cognitive impairment and elucidate the underlying mechanisms. Using an arsenic-exposed Wistar rat model and an arsenic-induced HT22 cells model, we assessed cognitive ability, measured serum and brain arsenic levels, and evaluated pathological damage through histological analysis and transmission electron microscopy. Additionally, we examined oxidative stress and iron ion levels using GSH, MDA, ROS and tissue iron biochemical kits, and analyzed the expression of ferroptosis-related markers using western blot and qRT-PCR. Our results revealed that arsenic exposure increased both serum and brain arsenic levels, resulting in hippocampal pathological damage and subsequent decline in learning and memory abilities. Arsenic-induced neuronal ferroptosis was mediated by the inhibition of the xCT/GSH/GPX4/Nrf2 signaling axis and disruption of iron metabolism. Notably, ellagic acid intervention effectively reduced serum and brain arsenic levels, ameliorated neuronal damage, and improved oxidative stress, ferroptosis, and cognitive impairment. These beneficial effects were associated with the activation of the Nrf2/Keap1 signaling pathway, upregulation of GPX4 expression, and enhanced iron ion excretion. In conclusion, ellagic acid demonstrates promising neuroprotective effects against arsenic-induced neurotoxicity by mitigating neuronal ferroptosis and cognitive impairment.

2.
Am J Otolaryngol ; 45(5): 104400, 2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39094303

RESUMEN

OBJECTIVES: The aim of this study was to present an institution's experience with cochlear reimplantation (CRI), to assess surgical challenges and post-operative outcomes and to increase the success rate of CRI. STUDY DESIGN: Retrospective single-institution study. SETTING: Tertiary medical center. METHODS: We retrospectively evaluated data from 76 reimplantation cases treated in a tertiary center between 2001 and 2022. Clinical features including etiology of hearing loss, type of failure, surgical issues, and auditory speech performance were analyzed. Categorical Auditory Performance (CAP) and Speech Intelligibility Rating (SIR) scores were used to evaluate pre- and post-CRI outcomes. RESULTS: The CRI population comprises of 7 patients from our institute,69 referred patients from other centers. Device failure was the most common reason (68/76, 89.5 %) for CRI; in addition, there were 7 medical failures and 1 had both soft device failure. Medical failures included flap rupture and device extrusion, magnet migration, auditory neuropathy, leukoencephalopathy, foreign-body residue and meningitis. In 21/76 patients, the electrode technology was upgraded. The mean time to failure was 0.58-13 years, with a mean of 4.97 years. The mean (± SD) CAP and SIR scores before and after CRI were 5.2 ± 1.2 versus 5.5 ± 1.1 and 3.4 ± 1.1 versus 3.5 ± 1.1, respectively. Performance was poor in six patients with severe cochlear malformation, auditory nerve dysplasia, leukoencephalopathy, and epilepsy. CONCLUSION: CRI surgery is a challenging but relatively safe procedure, and most reimplanted patients experience favorable postoperative outcomes. Medical complications and intracochlear damage are the main causes of poor postoperative results. Therefore, adequate preoperative preparation and atraumatic CRI should be carried out for optimal results.

4.
Liver Int ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39037259

RESUMEN

BACKGROUND: Extracellular vesicles (EVs) facilitate cell-cell interactions in the tumour microenvironment. However, standard and efficient methods to isolate tumour tissue-derived EVs are lacking, and their biological functions remain elusive. METHODS: To determine the optimal method for isolating tissue-derived EVs, we compared the characterization and concentration of EVs obtained by three previously reported methods using transmission electron microscopy, nanoparticle tracking analysis, and nanoflow analysis (Nanoflow). Additionally, the differential content of small RNAs, especially tsRNAs, between hepatocellular carcinoma (HCC) and adjacent normal liver tissues (ANLTs)-derived EVs was identified using Arraystar small RNA microarray. The targets of miRNAs and tsRNAs were predicted, and downstream functional analysis was conducted using Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, non-negative matrix factorization and survival prediction analysis. RESULTS: A differential centrifugation-based protocol without cell cultivation (NC protocol) yielded higher EV particles and higher levels of CD9+ and CD63+ EVs compared with other isolation protocols. Interestingly, the NC protocol was also effective for isolating frozen tissue-derived EVs that were indistinguishable from fresh tissue. HCC tissues showed significantly higher EV numbers compared with ANLTs. Furthermore, we identified different types of small RNAs in HCC tissue-derived EVs, forming a unique multidimensional intercellular communication landscape that can differentiate between HCC and ANLTs. ROC analysis further showed that the combination of the top 10 upregulated small RNAs achieved better diagnostic performance (AUC = .950 [.895-1.000]). Importantly, most tsRNAs in HCC tissue-derived EVs were downregulated and mitochondria-derived, mainly involving in lipid-related metabolic reprogramming. CONCLUSION: The NC protocol was optimal for isolating EVs from HCC, especially from frozen tissues. Our study emphasized the different roles of small-RNA in regulating the HCC ecosystem, providing insights into HCC progression and potential therapeutic targets.

5.
Microorganisms ; 12(7)2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39065256

RESUMEN

The treatment of antibiotic wastewater, which is known for its micro-toxicity, inhibition, and poor biochemistry, poses significant challenges, including complex processes, high energy demands, and secondary pollution. Bio-Fenton, a novel Fenton technology, enables the in situ production of H2O2 at near-neutral pH, having low energy requirements and sustainable properties, and reduces the hazards of H2O2 transportation and storage. We preliminary self-designed a heterogeneous Bio-Fenton reactor. An aerobic SBBR system with pure algae, pure bacteria, and bacteria-algae symbiosis was first constructed to investigate the optimal process conditions through the effects of carbon source concentration, light duration, bamboo charcoal filling rate, and dissolved oxygen (DO) content on the H2O2 production and COD removal. Second, the reactor was constructed by adding iron-carrying catalysts to remove ROX and SDZ wastewater. The results demonstrated that the optimal operating parameters of aerobic SBBR were an influent carbon source concentration of 500 mg/L, a water temperature of 20 ± 2 °C, pH = 7.5, a dissolved oxygen content of 5 mg/L, a light-dark ratio of 12 h:12 h, a light intensity of 2500 Lux, an HRT of 10 h, and a bamboo charcoal filling rate of 33%. Given these conditions, the bacterial-algal system was comprehensively found to be the most suitable biosystem for this experiment. Ultimately, the dynamically coupled Bio-Fenton process succeeded in the preliminary removal of 41.32% and 42.22% of the ROX and SDZ from wastewater, respectively.

6.
Bioresour Technol ; 406: 131074, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38971393

RESUMEN

The development of biodegradable antimicrobial bioplastics for food packaging holds great promise for solving the pollution and safety problems caused by petrochemical plastics and spoiled food. Herein, a natural active-bioplastic synthesized from citrus peel biomass is presented for perishable fruit preservation. These plastics are characterized by the nanoscale entanglement and recombinant hydrogen bonding between the endogenous pectin, polyphenols and cellulose micro/nanofibrils. They have attractive flexibility, tensile strength, gas barrier properties and antimicrobial activities, and can effectively extend the shelf life of perishable fruits such as banana and mango when used as food packaging. Cytotoxicity, degradability tests and life-cycle assessment show that these plastics had excellent nontoxicity and can be safely degraded or easily recycled. This work demonstrates a sustainable strategy for converting peel waste into eco-friendly bioplastics, providing a unique and novel insight into radically reducing the pollution and life-health threats posed by petrochemical plastics and spoiled food.


Asunto(s)
Antiinfecciosos , Frutas , Frutas/química , Antiinfecciosos/farmacología , Plásticos Biodegradables/farmacología , Plásticos Biodegradables/química , Embalaje de Alimentos/métodos , Conservación de Alimentos/métodos , Citrus/química , Reciclaje , Plásticos/química , Plásticos/farmacología , Resistencia a la Tracción , Polifenoles/farmacología , Polifenoles/química , Biodegradación Ambiental
7.
J Natl Cancer Cent ; 4(1): 6-13, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39036384

RESUMEN

Renal cancer is one of the most common malignancies of the urinary system, and the number of deaths continues to increase. The standardized management of the diagnosis and treatment of renal cancer is challenging due to the great differences in the diagnosis and treatment of renal cancer in different regions. The Renal Cancer Expert Committee of the National Cancer Quality Control Center (NCQCC) identified a lack of authoritative quality control standards as an opportunity to utilize its multidisciplinary membership to improve the standardized diagnosis and treatment of renal cancer. The Renal Cancer Expert Committee of the NCQCC aims to promote quality control and national standardization, uniformity, and normalization of renal cancer diagnosis and treatment, which ultimately improved the survival rate and quality of life of renal cancer patients. A panel of experts with renal cancer surgery, renal cancer medicine, medical imaging, pathology and radiotherapy were drawn together and determined the quality control standards for the standardized diagnosis and treatment of renal cancer. The Indices includes 20 items that cover all key areas in the diagnosis and treatment of renal cancer, such as standard diagnosis, surgery treatment, systemic treatment, and prognostic evaluation.

9.
Ecotoxicol Environ Saf ; 281: 116681, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38964063

RESUMEN

Fluoride exposure has been implicated as a potential risk factor for hypertension, but the underlying mechanisms remain unclear. This study investigated the role of the RhoA/ROCK signaling pathway in fluoride-induced hypertension. Male Wistar rats were divided into different groups and exposed to varying concentrations of sodium fluoride (NaF) or sodium chloride (NaCl) via drinking water. The rats' blood pressure was measured, and their aortic tissue was utilized for high-throughput sequencing analysis. Additionally, rat and A7r5 cell models were established using NaF and/or Fasudil. The study evaluated the effects of fluoride exposure on blood pressure, pathological changes in the aorta, as well as the protein/mRNA expression levels of phenotypic transformation indicators (a-SMA, calp, OPN) in vascular smooth muscle cells (VSMCs), along with the RhoA/ROCK signaling pathway (RhoA, ROCK1, ROCK2, MLC/p-MLC). The results demonstrated that fluoride exposure in rats led to increased blood pressure. High-throughput sequencing analysis revealed differential gene expression associated with vascular smooth muscle contraction, with the RhoA/ROCK signaling pathway emerging as a key regulator. Pathological changes in the rat aorta, such as elastic membrane rupture and collagen fiber deposition, were observed following NaF exposure. However, fasudil, a ROCK inhibitor, mitigated these pathological changes. Both in vitro and in vivo models confirmed the activation of the RhoA/ROCK signaling pathway and the phenotypic transformation of VSMCs from a contractile to a synthetic state upon fluoride exposure. Fasudil effectively inhibited the activities of ROCK1 and ROCK2 and attenuated the phenotypic transformation of VSMCs. In conclusion, fluoride has the potential to induce hypertension through the activation of the RhoA/ROCK signaling pathway and phenotypic changes in vascular smooth muscle cells. These results provide new insights into the mechanism of fluoride-induced hypertension.


Asunto(s)
Hipertensión , Músculo Liso Vascular , Ratas Wistar , Transducción de Señal , Quinasas Asociadas a rho , Animales , Quinasas Asociadas a rho/metabolismo , Masculino , Hipertensión/inducido químicamente , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/patología , Ratas , Transducción de Señal/efectos de los fármacos , Proteína de Unión al GTP rhoA/metabolismo , Fluoruro de Sodio/toxicidad , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/patología , Fenotipo , Presión Sanguínea/efectos de los fármacos , Fluoruros/toxicidad , Proteínas de Unión al GTP rho
10.
J Ethnopharmacol ; 334: 118544, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39013542

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: WenTongGanPi Decoction (WTGPD) is a representative medical practice of the Fuyang School of Traditional Chinese Medicine (TCM), which originated from the classical Lu's Guizhi method. WTGPD places emphasis on the balance and functionality of yang qi, and is effective in treating TCM symptoms related to liver qi stagnation and spleen yang deficiency. In TCM, diarrhea-predominant irritable bowel syndrome (IBS-D) is often diagnosed as liver depression and spleen deficiency, and the use of WTGPD has shown significant therapeutic effect. However, the underlying mechanism of WTGPD treating IBS-D remains unclear. AIM OF THE STUDY: To explore the effect and mechanism of WTGPD in the treatment of IBS-D. MATERIALS AND METHODS: An IBS-D model with liver depression and spleen deficiency was constructed by chronic immobilization stress stimulation and sennae folium aqueous gavage. The impact of WTGPD on IBS-D rats was evaluated through measurements of body weight, fecal water content, and abdominal withdrawal reflex (AWR). Intestinal permeability was assessed using hematoxylin-eosin (HE), alcian blue-periodic acid schiff (AB-PAS), immunofluorescence (IF) staining, and quantitative real-time PCR (qRT-PCR). The components of WTGPD were analyzed using UPLC-Q-TOF-MS. The underlying mechanisms were investigated through network pharmacology, transcriptomics sequencing, western blot (WB), molecular docking, and 16S rRNA sequencing. RESULTS: WTGPD treatment effectively alleviated diarrhea and abnormal pain in IBS-D rats (P < 0.05). It enhanced the intestinal barrier function by improving colonic structure and increasing the expression of tight junction proteins (P < 0.05). A total of 155 components were identified in WTGPD. Both network pharmacology and transcriptomics sequencing analysis highlighted MAPK as the key signaling pathway in WTGPD's anti-IBS-D effect. The WB results showed a significant decrease in p-p38, p-ERK and p-JNK expression after WTGPD treatment (P < 0.0001). Guanosine, adenosine and hesperetin in WTGPD may be involved in regulating the phosphorylation of p38, ERK and JNK. Additionally, WTGPD significantly enhanced microbial diversity and increased the production of colonic valeric acid in IBS-D rats (P < 0.01). CONCLUSION: In conclusion, our findings suggest that WTGPD can effectively alleviate IBS-D and improve intestinal barrier likely via inhibiting MAPK signal pathway and improving micobial dysbiosis.


Asunto(s)
Diarrea , Medicamentos Herbarios Chinos , Mucosa Intestinal , Síndrome del Colon Irritable , Ratas Sprague-Dawley , Síndrome del Colon Irritable/tratamiento farmacológico , Animales , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Masculino , Diarrea/tratamiento farmacológico , Ratas , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Modelos Animales de Enfermedad , Permeabilidad , Simulación del Acoplamiento Molecular
11.
Ann Surg Oncol ; 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38879674

RESUMEN

BACKGROUND: Distant metastatic parathyroid carcinoma (DM-PC) is a rare but often lethal entity with limited data about prognostic indicators. We sought to investigate the risk factors, patterns, and outcomes of DM-PC. METHODS: In this observational cohort study, 126 patients who underwent surgery for PC at a tertiary referral center from 2010 to 2023 were enrolled, among whom 38 had DMs. Univariate and multivariate Cox regression analyses were used to assess the effects of prognostic factors on DM. RESULTS: The cumulative incidence of DM was 14.1%, 33.8%, and 66.9% at 5, 10, and 20 years in the duration of disease course, respectively. DM-PC patients suffered a worse 5-year overall survival of 37.1% compared with 89.8% in the non-DM patients (p < 0.001). DM-PC patients also suffered more previous operations (p < 0.001), higher preoperative serum calcium (p<0.001) and parathyroid hormone (PTH) levels (p < 0.001), lower frequencies of R0 resection (p < 0.001), higher rates of pathological vascular invasion (p = 0.020), thyroid infiltration (p = 0.027), extraglandular extension (p = 0.001), upper aerodigestive tract (UAT) invasion (p < 0.001), and lymph node metastasis (p < 0.001). Multivariate Cox regression revealed that non-R0 resection (HR 6.144, 95% CI 2.881-13.106, p < 0.001), UAT invasion (HR 3.718, 95% CI 1.782-7.756, p < 0.001), and higher preoperative PTH levels (HR 1.001, 95% CI 1.000-1.001, p = 0.012) were independent risk factors of DM. CONCLUSIONS: Upper aerodigestive tract invasion and higher preoperative PTH levels might be risk factors for possible metastatic involvement of PC. R0 resection and closer surveillance should be considered in such cases to minimize the risk of DM and to optimize patient care.

12.
Noise Health ; 26(121): 174-179, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38904819

RESUMEN

OBJECTIVE: This study aimed to explore the effect of ward-noise-reduction management on the mental health and quality of life of patients with inflammatory bowel disease. METHODS: The medical records of 275 patients with inflammatory bowel disease admitted to the First Affiliated Hospital of Wenzhou Medical University from January 2020 to January 2023 were retrospectively analyzed. Routine care was performed for such hospitalized patients from January 2020 to July 2021. Thus, 124 patients were enrolled in the control group. From August 2021 to January 2023, our hospital implemented ward-noise-reduction management for such inpatients, and 151 patients were included in the observation group. The Athens Insomnia Scale (AIS), the State-Trait Anxiety Inventory, the Inflammatory Bowel Disease Questionnaire (IBDQ), and the noise level at the time of admission and discharge were compared. RESULTS: No significant difference in the State Anxiety Scale (S-AI), Trait Anxiety Scale (T-AI), and AIS and IBDQ scores at baseline existed between the two groups (P > 0.05). After nursing, the S-AI, T-AI, and AIS scores of the observation group were lower than those of the control group, and the IBDQ score of the observation group was higher than that of the control group (P < 0.05). The noise level of the observation group was lower than that of the control group during hospitalization in maximum sound level and average intermediate (P < 0.05). CONCLUSIONS: The application of ward-noise-reduction management in the nursing of patients with inflammatory bowel disease can improve their negative mood, improve their sleep quality, and quality of life, and reduce the ward noise level in maximum sound level and average intermediate, which has high clinical value.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Ruido , Calidad de Vida , Humanos , Femenino , Masculino , Enfermedades Inflamatorias del Intestino/psicología , Enfermedades Inflamatorias del Intestino/terapia , Adulto , Estudios Retrospectivos , Persona de Mediana Edad , Ansiedad/prevención & control , Ansiedad/etiología , Salud Mental , Encuestas y Cuestionarios
13.
Molecules ; 29(12)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38930975

RESUMEN

As a toxic Volatile Organic Pollutant (TVOC), formaldehyde has a toxic effect on microorganisms, consequently inhibiting the biochemical process of formaldehyde wastewater treatment. Therefore, the selective degradation of formaldehyde is of great significance in achieving high-efficiency and low-cost formaldehyde wastewater treatment. This study constructed a heterogeneous Fe-ZSM-5/H2O2 Fenton system f or the selective degradation of target compounds. By immobilizing Fe3+ onto the surface of a ZSM-5 molecular sieve, Fe-ZSM-5 was prepared successfully. XRD, BET and FT-IR spectral studies showed that Fe-ZSM-5 was mainly composed of micropores. The influences of different variables on formaldehyde-selective heterogeneous Fenton degradation performance were studied. The 93.7% formaldehyde degradation and 98.2% selectivity of formaldehyde compared with glucose were demonstrated in the optimized Fenton system after 360 min. Notably, the resultant selective Fenton oxidation system had a wide range of pH suitability, from 3.0 to 10.0. Also, the Fe-ZSM-5 was used in five consecutive cycles without a significant drop in formaldehyde degradation efficiency. The use of reactive oxygen species scavengers indicated that the hydroxyl radical was the primary active species responsible for degrading formaldehyde. Furthermore, great degradation performance was acquired with high concentrations of formaldehyde for this system, and the degradation efficiency was more than 95.0%.

15.
Int J Biol Macromol ; 272(Pt 1): 132893, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38838883

RESUMEN

Foodborne pathogens result in a great harm to human, which is an urgent problem to be addressed. Herein, a novel cellulose-based packaging films with excellent anti-bacterial properties under visible light were prepared. A porphyrin-based covalent organic polymer (Por-COPs) was constructed, then covalently grafted onto dialdehyde cellulose (DAC). The addition of Por-COPs enhanced the mechanical, hydrophobicity, and water resistance of the DAC-based composite films. DAC/Por-COP-2.5 film exhibited outstanding properties for the photodynamic inactivation of bacteria under visible light irradiation, delivering inactivation efficiencies of 99.90 % and 99.45 % towards Staphylococcus aureus and Escherichia coli within 20 min. The DAC/Por-COPs films efficiently generated •O2- and 1O2 under visible light, thereby causing oxidative stress to cell membranes for bacterial inactivation. The prepared composite film forms a protective barrier against bacterial contamination. Results guide the development of high performance and more sustainable packaging films for the food sector.


Asunto(s)
Celulosa , Escherichia coli , Porfirinas , Staphylococcus aureus , Celulosa/química , Celulosa/análogos & derivados , Celulosa/farmacología , Porfirinas/química , Porfirinas/farmacología , Escherichia coli/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Luz , Embalaje de Alimentos/métodos , Polímeros/química , Polímeros/farmacología , Esterilización/métodos , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología
16.
Gut Microbes ; 16(1): 2363020, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38841892

RESUMEN

CD4+ T cells play a critical role in regulating autoimmune diseases, and intestinal microbial metabolites control various immune responses. Granzyme B (GzmB)-producing CD4+ T cells have been recently reported to participate in the pathogenesis of autoimmune diseases. Here, we found that GzmbB-deficient CD4+ T cells induced more severe colitis in Rag1-/- mice than wild-type (WT) CD4+ T cells. Germ-free (GF) mice exhibited a lower expression of GzmB in intestinal CD4+ T cells compared to specific pathogen-free (SPF) mice. Intestinal microbial metabolite butyrate increased GzmB expression in CD4+ T cells, especially in IL-10-producing Th1 cells, through HDAC inhibition and GPR43, but not GPR41 and GPR109a. Butyrate-treated GzmB-deficient CD4+ T cells demonstrated more severe colitis compared to butyrate-treated WT CD4+ T cells in the T cell transfer model. Butyrate altered intestinal microbiota composition, but altered microbiota did not mediate butyrate induction of intestinal CD4+ T cell expression of GzmB in mice. Blimp1 was involved in the butyrate induction of GzmB in IL-10-producing Th1 cells. Glucose metabolism, including glycolysis and pyruvate oxidation, mediated butyrate induction of GzmB in Th1 cells. In addition, we found that IKZF3 and NR2F6 regulated GzmB expression induced by butyrate. Together, our studies underscored the critical role of GzmB in mediating gut bacterial metabolite butyrate regulation of T cell tolerance at the mucosal surface.


Asunto(s)
Butiratos , Colitis , Microbioma Gastrointestinal , Granzimas , Interleucina-10 , Ratones Endogámicos C57BL , Células TH1 , Animales , Interleucina-10/metabolismo , Interleucina-10/genética , Interleucina-10/inmunología , Células TH1/inmunología , Ratones , Microbioma Gastrointestinal/efectos de los fármacos , Butiratos/metabolismo , Butiratos/farmacología , Granzimas/metabolismo , Colitis/inmunología , Colitis/microbiología , Colitis/metabolismo , Ratones Noqueados , Factor 1 de Unión al Dominio 1 de Regulación Positiva/metabolismo , Factor 1 de Unión al Dominio 1 de Regulación Positiva/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Tolerancia Inmunológica , Proteínas de Homeodominio
17.
Chemistry ; 30(44): e202401371, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-38825569

RESUMEN

Herein, we describe a visible light-induced C(sp2)-H arylation method for quinoxalin-2(1H)-ones and coumarins using iodonium ylides without the need for external photocatalysts. The protocol demonstrates a broad substrate scope, enabling the arylation of diverse heterocycles through a simple and mild procedure. Furthermore, the photochemical reaction showcases its applicability in the efficient synthesis of biologically active molecules. Computational investigations at the CASPT2//CASSCF/PCM level of theory revealed that the excited state of quinoxalin-2(1H)-one facilitates electron transfer from its π bond to the antibonding orbital of the C-I bond in the iodonium ylide, ultimately leading to the formation of an aryl radical, which subsequently participates in the C-H arylation process. In addition, our calculations reveal that during the single-electron transfer (SET) process, the C-I bond cleavage in iodonium ylide and new C-C bond formation between resultant aryl radical and cationic quinoxaline species take place in a concerned manner. This enables the arylation reaction to efficiently proceed along an energy-efficient route.

18.
Innovation (Camb) ; 5(3): 100603, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38745762

RESUMEN

The vaccine-induced innate immune response is essential for the generation of an antibody response. To date, how Ad5-vectored vaccines are influenced by preexisting anti-Ad5 antibodies during activation of the early immune response remains unclear. Here, we investigated the specific alterations in GP1,2-specific IgG-related elements of the early immune response at the genetic, molecular, and cellular levels on days 0, 1, 3, and 7 after Ad5-EBOV vaccination. In a causal multiomics analysis, distinct early immune responses associated with GP1,2-specific IgG were observed in Ad5-EBOV recipients with a low level of preexisting anti-Ad5 antibodies. This study revealed the correlates of the Ad5-EBOV-induced IgG response and provided mechanistic evidence for overcoming preexisting Ad5 immunity during the administration of Ad5-vectored vaccines.

19.
Plant Cell Environ ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38747469

RESUMEN

Drought, as a primary environmental factor, imposes significant constraints on developmental processes and productivity of plants. PHDs were identified as stress-responsive genes in a wide range of eukaryotes. However, the regulatory mechanisms governing PHD genes in maize under abiotic stress conditions are still largely unknown and require further investigation. Here, we identified a mutant, zmvil2, in the EMS mutant library with a C to T mutation in the exon of the Zm00001d053875 (VIN3-like protein 2, ZmVIL2), resulting in premature termination of protein coding. ZmVIL2 belongs to PHD protein family. Compared to WT, zmvil2 mutant exhibited increased sensitivity to drought stress. Consistently, overexpression of ZmVIL2 enhances drought resistance in maize. Y2H, BiFC, and Co-IP experiments revealed that ZmVIL2 directly interacts with ZmFIP37 (FKBP12-interacting protein of 37). zmfip37 knockout mutants also exhibit decreased drought tolerance. Interestingly, we demonstrated that ZmABF4 directly binds to the ZmVIL2 promoter to enhance its activity in yeast one hybrid (Y1H), electrophoretic mobility shift assay (EMSA) and dual luciferase reporter assays. Therefore, we uncovered a novel model ZmABF4-ZmVIL2/ZmFIP37 that promotes drought tolerance in maize. Overall, these findings have enriched the knowledge of the functions of PHD genes in maize and provides genetic resources for breeding stress-tolerant maize varieties.

20.
Hortic Res ; 11(5): uhae068, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38725456

RESUMEN

Salinity stress causes serious damage to crops worldwide, limiting plant production. However, the metabolic and molecular mechanisms underlying the response to salt stress in rose (Rosa spp.) remain poorly studied. We therefore performed a multi-omics investigation of Rosa hybrida cv. Jardin de Granville (JDG) and Rosa damascena Mill. (DMS) under salt stress to determine the mechanisms underlying rose adaptability to salinity stress. Salt treatment of both JDG and DMS led to the buildup of reactive oxygen species (H2O2). Palisade tissue was more severely damaged in DMS than in JDG, while the relative electrolyte permeability was lower and the soluble protein content was higher in JDG than in DMS. Metabolome profiling revealed significant alterations in phenolic acid, lipids, and flavonoid metabolite levels in JDG and DMS under salt stress. Proteome analysis identified enrichment of flavone and flavonol pathways in JDG under salt stress. RNA sequencing showed that salt stress influenced primary metabolism in DMS, whereas it substantially affected secondary metabolism in JDG. Integrating these datasets revealed that the phenylpropane pathway, especially the flavonoid pathway, is strongly enhanced in rose under salt stress. Consistent with this, weighted gene coexpression network analysis (WGCNA) identified the key regulatory gene chalcone synthase 1 (CHS1), which is important in the phenylpropane pathway. Moreover, luciferase assays indicated that the bHLH74 transcription factor binds to the CHS1 promoter to block its transcription. These results clarify the role of the phenylpropane pathway, especially flavonoid and flavonol metabolism, in the response to salt stress in rose.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...