Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 216
Filtrar
1.
J Agric Food Chem ; 2024 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-39439127

RESUMEN

This work was designed for the in-depth characterization and holistic comparison of up to 12 ginseng varieties, which can benefit the development of functional foods and ensure their authenticity in the food industry. An online comprehensive two-dimensional liquid chromatography/quadrupole time-of-flight mass spectrometry (2D-LC/QTOF-MS) approach was established by configurating the XCharge C18 and HSS Cyano columns. Under the optimal conditions, we characterized a total of 1146 ginsenosides (including 876 potentially new compounds) from 12 ginseng varieties by reference to an in-house library of 573 known ginsenosides and 70 reference compounds. The online 2D-LC/QTOF-MS-based untargeted metabolomics workflows were developed, by which 126 potential ginsenoside markers were unveiled and utilized to establish the key identification points for each ginseng species. Compared with the conventional liquid chromatography/mass spectrometry metabolomics, our multidimensional chromatography approach performed better in discriminating multiple ginseng varieties. This work demonstrates a potent and practical methodology to identify easily confused functional plants.

2.
Biomaterials ; 314: 122839, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39288618

RESUMEN

Rheumatoid arthritis (RA) is an autoimmune disease characterized by destructive effects. Although current therapies utilizing antibodies against inflammatory cytokines have shown some success, the inhibition of a single inflammatory molecule may not suffice to impede the progression of RA due to the intricate pathogenesis involving multiple molecules. In this study, we have developed an intelligent transformable peptide, namely BP-FFVLK-DSGLDSM (BFD). BFD has the ability to self-assemble into spherical nanoparticles in water or in the blood circulation to facilitate their delivery and distribution. When endocytosed into immune cells, BFD can identify and attach to phosphorylation sites on IκBα and in situ transform into a nanofibrous network coating NF-κB/IκBα complexes, blocking the phosphorylation and degradation of IκBα. As a result, BFD enables decreasing expression of proinflammatory mediators. In the present study, we demonstrate that BFD exhibits notable efficacy in alleviating arthritis-related manifestations, such as joints and tissues swelling, as well as bone and cartilage destruction on the collagen-induced arthritis (CIA) rat model. The investigation of intracellular biodistribution, phosphorylation of IκBα, and cytokine detection in culture medium supernatant, joint tissue, and serum exhibits strong associations with therapeutic outcomes. The utilization of transformable peptide presents a novel approach for the management of inflammatory diseases.

3.
Artículo en Inglés | MEDLINE | ID: mdl-39316061

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a progressive and fatal disease characterized by neuronal degeneration of the spinal cord and brain and believed to be related to the immune system. In this study, our aim is to use Mendelian randomization (MR) to search for immune markers related to ALS. A total of 731 immune cell traits were included in this study. MR analysis was used to identify the causality between 731 immune cell traits (with 3,757 Europeans) and ALS (with 138,086 Europeans). Colocalization analysis was used to verify the found causality, protein-protein interaction prediction was used to look for the interacting proteins that are known to be involved in ALS. We found low expression levels of CD3 on central memory CD8+ T cell is risk factor for ALS (OR = 0.90, 95% CI: 0.86-0.95, P = 0.0000303). CD3 can interact with three ALS-related proteins: VCP, HLA-DRA and HLA-DRB5, which are associated with adaptive immune response. Our study reported for the first time that low-level CD3 is a risk factor for ALS and the possible mechanism, which could provide a potential strategy for ALS diagnosis and therapy.

4.
Heliyon ; 10(14): e34600, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39149038

RESUMEN

Objective: The aim of this study was to elucidate the genetic pathways associated with Moyamoya disease (MMD) and Moyamoya syndrome (MMS), compare the functional activities, and validate relevant related genes in an independent dataset. Methods: We conducted a comprehensive search for genetic studies on MMD and MMS across multiple databases and identified related genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichments analyses were performed for these genes. Commonly shared genes were selected for further validation in the independent dataset, GSE189993. The Sangerbox platform was used to perform statistical analysis and visualize the results. P<0.05 indicated a statistically significant result. Results: We included 52 MMD and 51 MMS-related publications and identified 126 and 51 relevant genes, respectively. GO analysis for MMD showed significant enrichment in cytokine activity, cell membrane receptors, enzyme binding, and immune activity. A broader range of terms was enriched for MMS. KEGG pathway analysis for MMD highlighted immune and cellular activities and pathways related to MMS prominently featured inflammation and metabolic disorders. Notably, nine overlapping genes were identified and validated. The expressions of RNF213, PTPN11, and MTHFR demonstrated significant differences in GSE189993. A combined receiver operating characteristic curve showed high diagnostic accuracy (AUC = 0.918). Conclusions: The findings indicate a close relationship of MMD with immune activity and MMS with inflammation, metabolic processes and other environmental factors in a given genetic background. Differentiating between MMD and MMS can enhance the understanding of their pathophysiology and inform the strategies for their diagnoses and treatment.

5.
Phytochem Anal ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39165116

RESUMEN

INTRODUCTION: Chinese herbal medicines have been utilized for thousands of years to prevent and treat diseases. Accurate identification is crucial since their medicinal effects vary between species and varieties. Metabolomics is a promising approach to distinguish herbs. However, current metabolomics data analysis and modeling in Chinese herbal medicines are limited by small sample sizes, high dimensionality, and overfitting. OBJECTIVES: This study aims to use metabolomics data to develop HerbMet, a high-performance artificial intelligence system for accurately identifying Chinese herbal medicines, particularly those from different species of the same genus. METHODS: We propose HerbMet, an AI-based system for accurately identifying Chinese herbal medicines. HerbMet employs a 1D-ResNet architecture to extract discriminative features from input samples and uses a multilayer perceptron for classification. Additionally, we design the double dropout regularization module to alleviate overfitting and improve model's performance. RESULTS: Compared to 10 commonly used machine learning and deep learning methods, HerbMet achieves superior accuracy and robustness, with an accuracy of 0.9571 and an F1-score of 0.9542 for distinguishing seven similar Panax ginseng species. After feature selection by 25 different feature ranking techniques in combination with prior knowledge, we obtained 100% accuracy and an F1-score for discriminating P. ginseng species. Furthermore, HerbMet exhibits acceptable inference speed and computational costs compared to existing approaches on both CPU and GPU. CONCLUSIONS: HerbMet surpasses existing solutions for identifying Chinese herbal medicines species. It is simple to use in real-world scenarios, eliminating the need for feature ranking and selection in classical machine learning-based methods.

6.
J Chromatogr A ; 1732: 465233, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39142171

RESUMEN

Metabolites identification is crucial to develop functional foods or perform quality control. Prunella vulgaris (Xia-Ku-Cao) is a medicinal and edible plant used as the herbal medicine or main additive in functional beverage. However, current analytical strategies can only on-line characterize tens of compounds, restricted by insufficient chromatographic resolution and low coverage of the mass spectrometric scan methods. This work was designed to characterize the wide-polarity components from the ear of P. vulgaris. The total extract was fractionated by semi-preparative high-performance liquid chromatography into the retained medium-polarity fraction and unretained polar fraction, which were further analyzed by offline two-dimensional liquid chromatography (2D-LC) and hydrophilic interaction chromatography, respectively. Data-independent high-definition MSE of the Vion™ ion mobility time-of-flight mass spectrometer was utilized enabling the high-coverage acquisition of collision-induced dissociation-MS2 data. The offline 2D-LC, configuring the XBridge Amide and HSS T3 columns, gave high orthogonality (0.81) and effective peak capacity (1555). Automatic peak annotation facilitated by the UNIFI™ bioinformatics platform and comparison with 62 reference compounds achieved the efficient and more reliable structural elucidation. We could characterize 255 compounds from P. vulgaris, with numerous phenylpropanoid phenolic acids and triterpenoid O-glycosides newly reported. Especially, collision cross section (CCS) prediction and targeted isolation of three compounds assisted in the identification of 39 groups of isomers. Additionally, 17 hydrophilic compounds, involving oligosaccharides and organic acids, were characterized from the unretained polar fraction. Conclusively, the in-depth metabolites identification of P. vulgaris was accomplished, and the results can benefit the development and better quality control of this valuable plant.


Asunto(s)
Interacciones Hidrofóbicas e Hidrofílicas , Extractos Vegetales , Prunella , Prunella/química , Extractos Vegetales/química , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas/métodos , Espectrometría de Movilidad Iónica/métodos
7.
J Agric Food Chem ; 72(32): 17964-17976, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39096281

RESUMEN

Spinal cord injury (SCI) is one of the most serious health problems, with no effective therapy. Recent studies indicate that Fisetin, a natural polyphenolic flavonoid, exhibits multiple functions, such as life-prolonging, antioxidant, antitumor, and neuroprotection. However, the restorative effects of Fisetin on SCI and the underlying mechanism are still unclear. In the present study, we found that Fisetin reduced LPS-induced apoptosis and oxidative damage in PC12 cells and reversed LPS-induced M1 polarization in BV2 cells. Additionally, Fisetin safely and effectively promoted the motor function recovery of SCI mice by attenuating neurological damage and promoting neurogenesis at the lesion. Moreover, Fisetin administration inhibited glial scar formation, modulated microglia/macrophage polarization, and reduced neuroinflammation. Network pharmacology, RNA-seq, and molecular biology revealed that Fisetin inhibited the activation of the JAK2/STAT3 signaling pathway. Notably, Colivelin TFA, an activator of JAK2/STAT3 signaling, attenuated Fis-mediated neuroinflammation inhibition and therapeutic effects on SCI mice. Collectively, Fisetin promotes functional recovery after SCI by inhibiting microglia/macrophage M1 polarization and the JAK2/STAT3 signaling pathway. Thus, Fisetin may be a promising therapeutic drug for the treatment of SCI.


Asunto(s)
Flavonoles , Janus Quinasa 2 , Macrófagos , Microglía , Factor de Transcripción STAT3 , Transducción de Señal , Traumatismos de la Médula Espinal , Animales , Humanos , Masculino , Ratones , Ratas , Polaridad Celular/efectos de los fármacos , Flavonoides/farmacología , Flavonoides/administración & dosificación , Flavonoles/farmacología , Janus Quinasa 2/metabolismo , Janus Quinasa 2/genética , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Microglía/metabolismo , Microglía/inmunología , Células PC12 , Recuperación de la Función/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/genética , Traumatismos de la Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/inmunología , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética
8.
Phytochemistry ; 228: 114246, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39163914

RESUMEN

Centella asiatica (L.) Urban is a medical plant rich in triterpenoids, frequently used in Asia to treat skin conditions such as acne. To search for anti-photoaging agents, 16 known triterpenoids and five undescribed triterpenoids, including three ursane, one oleanane and one nor-ursane were isolated from the whole herb of C. asiatica. The structures and relative stereochemistry of these compounds were elucidated by detailed NMR spectra and HRESIMS. Compounds 1 and 2 were isomers of ursane-type and oleane-type triterpenes with rare aldehyde groups on C-23. Compound 4 was a unique example of a nor-ursane type triterpenoid. The Ultraviolet B (UVB) induced HaCaT cell damage model was used to measure the in vitro anti-photoaging activity of all 21 compounds. Twenty compounds significantly increased HaCaT viability and inhibited lactate dehydrogenase (LDH) release after UVB exposure. These findings highlight the protective effects of C. asiatica-derived triterpenoids against UVB damage and indicate their potential as natural agents that can protect the skin against photoaging.


Asunto(s)
Centella , Triterpenos , Rayos Ultravioleta , Triterpenos/farmacología , Triterpenos/química , Triterpenos/aislamiento & purificación , Centella/química , Humanos , Supervivencia Celular/efectos de los fármacos , Estructura Molecular , Envejecimiento de la Piel/efectos de los fármacos , Relación Estructura-Actividad , Relación Dosis-Respuesta a Droga , L-Lactato Deshidrogenasa/metabolismo , Células HaCaT
9.
J Sep Sci ; 47(14): e2400274, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39073301

RESUMEN

Herbal medicine (HM) is crucial in disease management and contains complex compounds with few active pharmacological ingredients, presenting challenges in quality control of raw materials and formulations. Effective separation, identification, and analysis of active components are vital for HM efficacy. Traditional methods like liquid-liquid extraction and solid-phase extraction are time-consuming and environmentally concerning, with limitations such as sorbent issues, pressure, and clogging. Magnetic solid-phase extraction uses magnetic sorbents for targeted analyte separation and enrichment, offering rapid, pressure-free separation. However, inorganic magnetic particles' aggregation and oxidation, as well as lack of selectivity, have led to the use of various coatings and modifications to enhance specificity and selectivity for complex herbal samples. This review delves into magnetic composites in HM pretreatment, specifically focusing on encapsulated or modified magnetic nanoparticles and materials like silica, ionic liquids, graphene family derivatives, carbon nanotubes, metal-organic frameworks, covalent organic frameworks, and molecularly imprinted polymers.


Asunto(s)
Extracción en Fase Sólida , Adsorción , Medicina de Hierbas , Estructuras Metalorgánicas/química , Propiedades de Superficie , Tamaño de la Partícula , Nanopartículas de Magnetita/química , Plantas Medicinales/química , Dióxido de Silicio/química
10.
Int J Mol Med ; 54(2)2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38963023

RESUMEN

Metformin has been the go­to medical treatment for addressing type 2 diabetes mellitus (T2DM) as a frontline oral antidiabetic. Obesity, cancer and bone deterioration are linked to T2DM, which is considered a metabolic illness. Numerous diseases associated with T2DM, such as tumours, cardiovascular disease and bone deterioration, may be treated with metformin. Intervertebral disc degeneration (IVDD) is distinguished by degeneration of the spinal disc, accompanied by the gradual depletion of proteoglycans and water in the nucleus pulposus (NP) of the IVD, resulting in lower back pain. The therapeutic effect of metformin on IVDD has also attracted much attention. By stimulating AMP­activated kinase, metformin could enhance autophagy and suppress cell senescence, apoptosis and inflammation, thus effectively delaying IVDD. The present review aimed to systematically explain the development of IVDD and mechanism of metformin in the treatment and prevention of IVDD to provide a reference for the clinical application of metformin as adjuvant therapy in the treatment of IVDD.


Asunto(s)
Degeneración del Disco Intervertebral , Metformina , Metformina/uso terapéutico , Metformina/farmacología , Degeneración del Disco Intervertebral/tratamiento farmacológico , Degeneración del Disco Intervertebral/prevención & control , Degeneración del Disco Intervertebral/metabolismo , Humanos , Animales , Progresión de la Enfermedad , Núcleo Pulposo/efectos de los fármacos , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patología , Hipoglucemiantes/uso terapéutico , Hipoglucemiantes/farmacología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Autofagia/efectos de los fármacos
11.
J Sep Sci ; 47(14): e2400354, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39034839

RESUMEN

The measurement of data repeatability in small-molecule metabolites acquired within and among different liquid chromatography-mass spectrometry (LC-MS) platforms is crucial for data sharing or data transfer in natural products research. This work was designed to investigate and evaluate the separation and detection performance of three commercial high-resolution LC-MS platforms (e.g., Agilent 6550 QTOF, Waters Vion IM-QTOF, and Thermo Scientific Orbitrap Exploris 120) using 68 ginsenoside references and the extract of Panax ginseng leaf. The retention time (tR), measured on these three platforms (under the same chromatography condition), showed good stability in different concentration tests, and within/among different instruments for both intra-day and inter-day precision examinations. Correlation in tR of ginsenosides was also highly determined on these three platforms. In spite of the different mass analyzers involved, these three platforms gave the accurate mass determination ability, especially enhanced resolution gained because of the ion mobility (IM) separation facilitated by IM-quadrupole time-of-flight. The current study has systematically evaluated the separation and MS detection performance enabled by three high-resolution LC-MS platforms taking ginsenosides as the template, and the reported findings can benefit the researchers for the selection of analytical platforms and the purpose of data sharing or data transfer.


Asunto(s)
Ginsenósidos , Espectrometría de Masas , Panax , Hojas de la Planta , Ginsenósidos/análisis , Ginsenósidos/aislamiento & purificación , Ginsenósidos/química , Panax/química , Hojas de la Planta/química , Cromatografía Liquida/métodos , Cromatografía Líquida de Alta Presión/métodos
12.
Fitoterapia ; 177: 106122, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38992474

RESUMEN

Chemical investigation on the aqueous extract of Dendrobium aphyllum led to the isolation of thirty-one constituents with structures identified by analysis of the extensive spectroscopic data (1D/2D NMR, MS, UV, and ECD), including previously undescribed two bibenzyls, one furfural, and one phenolic acid, namely trigonopol D (1), trigonopol C (2), dendrofunan A (10), and 6-(4-hydroxy-3-methoxyphenyl)-3,6-dioxohexyl acetate (30), respectively, as well as twenty-seven known ones. Among them, there were one new natural product (11), seven compounds (6-7, 9, 12, 20, 28, 31) described from the genus Dendrobium for the first time, and fifteen compounds (8, 13-17, 19, 21-27, 29) isolated from D. aphyllum for the first time. Further, the antioxidant and anti-inflammatory potentials of fifteen compounds (4-5, 8, 11-12, 14-19, 22, 24, 26, and 29) with significant scavenging capacities against DPPH and hydroxyl radicals, and virtual docking activities inhibiting COX-2 and 5-LOX, respectively. Our study may draw the attention of medicinal plant taxonomists and supply potential quality markers for discrimination of D. aphyllum from other species in Dendrobium genus.


Asunto(s)
Antiinflamatorios , Antioxidantes , Bibencilos , Dendrobium , Fitoquímicos , Dendrobium/química , Antioxidantes/farmacología , Antioxidantes/aislamiento & purificación , Antiinflamatorios/farmacología , Antiinflamatorios/aislamiento & purificación , Antiinflamatorios/química , Estructura Molecular , Bibencilos/farmacología , Bibencilos/aislamiento & purificación , Bibencilos/química , Fitoquímicos/farmacología , Fitoquímicos/aislamiento & purificación , Fenantrenos/farmacología , Fenantrenos/aislamiento & purificación , Fenantrenos/química , Fenilpropionatos/aislamiento & purificación , Fenilpropionatos/farmacología , Fenilpropionatos/química , China , Animales , Ratones , Araquidonato 5-Lipooxigenasa/metabolismo , Simulación del Acoplamiento Molecular , Furanos/aislamiento & purificación , Furanos/farmacología , Furanos/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Ciclooxigenasa 2/metabolismo
13.
Zhongguo Zhong Yao Za Zhi ; 49(11): 2953-2964, 2024 Jun.
Artículo en Chino | MEDLINE | ID: mdl-39041155

RESUMEN

A sensitive and efficient ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry(UHPLC-Q-TOF-MS) approach was established. Based on the self-developed information library, the chemical components from Euodiae Fructus were systematically characterized and identified. The chromatographic separation conditions(e. g., stationary phase,mobile phase, column temperature, and elution gradient) and MS detection conditions(nozzle voltage, capillary voltage, fragmentor,and collision energy) were optimized. Ultimately, an HSS T3 column(2. 1 mm×100 mm, 1. 8 µm) maintained at 35 ℃ was used,and 0. 1% formic acid water-acetonitrile at the flow rate of 0. 4 m L·min~(-1) was used as the mobile phase. Electrospray ionization was adopted to collect the positive and negative ion mass spectrometry data in Auto MS/MS mode. According to the reference compound comparison, fragment ion information interpretation, literature, and retrieval in the self-developed information library, 92 compounds were characterized or derived from the decoction of Euodiae Fructus, including 33 alkaloids, 23 flavonoids, 12 terpenoids, 12phenylpropanoids, and 12 others. Among them, 17 compounds were identified by comparison with the reference compounds, and 11compounds were unreported from Euodiae Fructus. This study realizes the rapid characterization and identification of multi-class chemical components in the decoction of Euodiae Fructus and provides a reference for the studies regarding its effective substances and quality control.


Asunto(s)
Medicamentos Herbarios Chinos , Evodia , Frutas , Cromatografía Líquida de Alta Presión/métodos , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/análisis , Frutas/química , Evodia/química , Espectrometría de Masas/métodos , Espectrometría de Masas en Tándem/métodos , Estructura Molecular , Espectrometría de Masa por Ionización de Electrospray/métodos
14.
Int J Oncol ; 65(2)2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38994758

RESUMEN

Cancer is characterized by unlimited proliferation and metastasis, and traditional therapeutic strategies usually result in the acquisition of drug resistance, thus highlighting the need for more personalized treatment. mRNA vaccines transfer the gene sequences of exogenous target antigens into human cells through transcription and translation to stimulate the body to produce specific immune responses against the encoded proteins, so as to enable the body to obtain immune protection against said antigens; this approach may be adopted for personalized cancer therapy. Since the recent coronavirus pandemic, the development of mRNA vaccines has seen substantial progress and widespread adoption. In the present review, the development of mRNA vaccines, their mechanisms of action, factors influencing their function and the current clinical applications of the vaccine are discussed. A focus is placed on the application of mRNA vaccines in cancer, with the aim of highlighting unique advances and the remaining challenges of this novel and promising therapeutic approach.


Asunto(s)
Vacunas contra el Cáncer , Neoplasias , Desarrollo de Vacunas , Vacunas de ARNm , Humanos , Neoplasias/inmunología , Neoplasias/terapia , Vacunas contra el Cáncer/uso terapéutico , Vacunas contra el Cáncer/inmunología , Vacunas Sintéticas/inmunología , Vacunas Sintéticas/uso terapéutico , COVID-19/prevención & control , COVID-19/inmunología , ARN Mensajero/genética , ARN Mensajero/inmunología , Medicina de Precisión/métodos , Inmunoterapia/métodos
15.
Bioorg Chem ; 149: 107487, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38805910

RESUMEN

The peel of Trichosanthes kirilowii Maxim, is considered one of the primary sources for Trichosanthis pericarpium in traditional Chinese medicine, exhibiting lipid-lowering properties. The impact on hyperlipidemia mice of the crude polysaccharide from the peel of T. Kirilowii (TRP) was investigated in this study. The findings revealed that TRP exhibited a significant improvement in hepatic lipid deposition. Moreover, it significantly decreased serum levels of TC, TG, and LDL-C, while concurrently increasing HDL-C. 16S rRNA amplicon sequencing technique revealed that TRP group exhibited an increased relative abundance of Actinobacteria, a down-regulated relative abundance of Ruminiclostridium, and an up-regulated relative abundance of Ileibacterium. Therefore, TRP might play a role in anti-hyperlipidemia through regulation of the intestinal milieu and enhancement of microbial equilibrium. Consequently, targeted fractionation of TRP resulted in the isolation of a homogeneous acidic polysaccharide termed TRP-1. The TRP-1 polysaccharide, with an average molecular weight of 1.00 × 104 Da, and was primarily composed of Rha, GlcA, GalA, Glc, Gal and Ara. TRP-1 possessed a backbone consisting of alternating connections between â†’ 6)-α-Galp-(1 â†’ 4)-α-Rhap-(1 â†’ 6)-α-Galp-(2 â†’ 6)-ß-Galp-(1 â†’ 6)-α-Galp-(2 â†’ 6)-ß-Galp-(1 â†’ units and branched chain containing â†’ 6)-α-Glcp-(1→, 2,4)-ß-Glcp-(1, and â†’ 4)-α-GlapA-(1→. Both TRP and TRP-1 exhibited significant disruption of cholesterol micelles, highlighting their potential as lipid-lowering agents that effectively inhibit cholesterol absorption pathways.


Asunto(s)
Colesterol , Microbioma Gastrointestinal , Hiperlipidemias , Polisacáridos , Trichosanthes , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Trichosanthes/química , Ratones , Hiperlipidemias/tratamiento farmacológico , Polisacáridos/farmacología , Polisacáridos/química , Polisacáridos/aislamiento & purificación , Colesterol/metabolismo , Colesterol/sangre , Hipolipemiantes/farmacología , Hipolipemiantes/química , Hipolipemiantes/aislamiento & purificación , Masculino , Estructura Molecular , Relación Estructura-Actividad , Relación Dosis-Respuesta a Droga
16.
Int J Biol Macromol ; 269(Pt 1): 131872, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38677706

RESUMEN

The increasing incidence of obesity has led to widespread attention in the exploration of natural ingredients. Ginseng polysaccharides (PGP), the main components from Panax ginseng, have been reported potential effect to attenuate obesity and regulate lipid metabolism. In this study, we found that PGP inhibited the high-fat diet (HFD)-induced weight gain, fat ratio and fat tissue weight after 8-week administration. Serum and liver lipid analysis showed that PGP decreased the levels of triglyceride and total cholesterol, which was mediated by the inhibition of key genes for fatty acid and cholesterol metabolisms. Metabolomics studies showed that the inhibitory effect of PGP on liver lipid accumulation was significantly correlated with its regulation of citric acid cycle and lysine degradation. PGP regulated the expression of genes related to lysine degradation in both liver tissue and hepatocytes. In addition, PGP reshaped the composition of fecal microbiota at the genus and species levels in obese mice. Spearman's correlation analysis demonstrated that Staphylococcus sciuri, Staphylococcus lentus, and Pseudoflavonifractor sp. An85 may be the potential targets that PGP maintains the abundance of l-lysine against obesity. It concluded that PGP can attenuate obesity and liver lipid accumulation by regulating fecal microbiota and hepatic lysine degradation.


Asunto(s)
Dieta Alta en Grasa , Heces , Microbioma Gastrointestinal , Metabolismo de los Lípidos , Hígado , Lisina , Obesidad , Panax , Polisacáridos , Animales , Lisina/metabolismo , Obesidad/metabolismo , Obesidad/tratamiento farmacológico , Panax/química , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/metabolismo , Hígado/efectos de los fármacos , Ratones , Polisacáridos/farmacología , Polisacáridos/química , Heces/microbiología , Dieta Alta en Grasa/efectos adversos , Masculino , Microbioma Gastrointestinal/efectos de los fármacos , Ratones Endogámicos C57BL
17.
PLoS One ; 19(4): e0301422, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38635838

RESUMEN

In recent years, there has been a growing awareness of the potential health benefits of the natural environment for human well-being. Given the fast-paced nature of contemporary lifestyles, research into the use of virtual environments as a means to provide various seasonal landscapes has gained increasing importance. OBJECTIVE: The aim of this study is to investigate the impact of different sensory modes on the preferences and therapeutic effects of virtual autumn landscapes on university campuses. METHODS: In this study, 320 participants, with an average age of 21.11 years (±1.21 years), were exposed to virtual environments featuring autumn color landscapes and bare tree landscapes using visual, auditory, and combined conditions. A control group was included for comparison. Differences in participants' physiological indicators (EEG, heart rate) and psychological measures (POMS, PANAS, SVS, ROS) were analyzed, with the use of the Holm correction (P < 0.05). RESULTS: (1) Autumn virtual landscapes with color had a superior therapeutic effect. (2) There were significant differences in the therapeutic effects of different sensory modes within the same season's landscape categories, suggesting that incorporating additional sensory dimensions may enhance therapeutic outcomes. CONCLUSION: Based on the study's findings, we recommend that when designing therapeutic environments, attention should be given to seasonal variations and the integration of various sensory modes to optimize therapeutic results.


Asunto(s)
Ambiente , Árboles , Humanos , Adulto Joven , Adulto , Estaciones del Año , Atención , Frecuencia Cardíaca/fisiología
18.
J Chromatogr A ; 1724: 464915, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38663319

RESUMEN

Efficient enrichment of trace zearalenone (ZEN) from the complex traditional Chinese medicine (TCM) samples is quite difficult, but of great significance for TCM quality control. Herein, we reported a novel magnetic solid phase extraction (MSPE) strategy for ZEN enrichment using the amino- and hydroxyl dual-functionalized magnetic microporous organic network (Fe3O4@MON-NH2-OH) as an advanced adsorbent combined with the high-performance liquid chromatography (HPLC) determination. Efficient extraction of ZEN was achieved via the possible hydrogen bonding, hydrophobic, and π-π interactions between Fe3O4@MON-NH2-OH and ZEN. The adsorption capacity of Fe3O4@MON-NH2-OH for ZEN was 215.0 mg g-1 at the room temperature, which was much higher than most of the reported adsorbents. Under the optimal condition, the developed Fe3O4@MON-NH2-OH-MSPE-HPLC method exhibited wide linear range (5-2500 µg L-1), low limits of detection (1.4-35 µg L-1), less adsorbent consumption (5 mg), and large enhancement factor (95) for ZEN. The proposed method was successfully applied to detect trace ZEN from 10 kinds of real TCM samples. Conclusively, this work demonstrates the Fe3O4@MON-NH2-OH can effectively extract trace ZEN from the complex TCM matrices, which may open up a new way for the application of MONs in the enrichment and extraction of trace contaminants or active constituents from the complex TCM samples.


Asunto(s)
Medicamentos Herbarios Chinos , Límite de Detección , Extracción en Fase Sólida , Zearalenona , Cromatografía Líquida de Alta Presión/métodos , Zearalenona/análisis , Zearalenona/química , Zearalenona/aislamiento & purificación , Extracción en Fase Sólida/métodos , Adsorción , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/aislamiento & purificación , Medicina Tradicional China , Porosidad , Nanopartículas de Magnetita/química
19.
Nat Commun ; 15(1): 1260, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38341431

RESUMEN

The combination of macrocyclic chemistry with co-crystal engineering has promoted the development of materials with vapochromic behaviors in supramolecular science. Herein, we develop a macrocycle co-crystal based on hybrid[4]arene and 1,2,4,5-tetracyanobenzene that is able to construct vapochromic materials. After the capture of benzene and toluene vapors, activated hybrid[4]arene-based co-crystal forms new structures, accompanied by color changes from brown to yellow. However, when hybrid[4]arene-based co-crystal captures cyclohexane and pyridine, neither structures nor colors change. Interestingly, hybrid[4]arene-based co-crystal can separate benzene from a benzene/cyclohexane equal-volume mixture and allow toluene to be removed from a toluene/ pyridine equal-volume mixture with purities reaching 100%. In addition, the process of adsorptive separation can be visually monitored. The selectivity of benzene from a benzene/cyclohexane equal-volume mixture and toluene from a toluene/ pyridine equal-volume mixture is attributed to the different changes in the charge-transfer interaction between hybrid[4]arene and 1,2,4,5-tetracyanobenzene when hybrid[4]arene-based co-crystal captures different vapors. Moreover, hybrid[4]arene-based co-crystal can be reused without losing selectivity and performance. This work constructs a vapochromic material for hydrocarbon separation.

20.
Saudi Pharm J ; 32(1): 101919, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38178852

RESUMEN

This study aimed to prepare an o/w mitiglinide microemulsion (MTGME) to improve the drug solubility and bioavailability. The formulation of o/w MTGME was optimized by the solubility study of drug, pseudo-ternary phase diagram and Box-Behnken design successively. MTGME was characterized by dynamic laser light scattering (DLS), zeta potential and transmission electron microscopy (TEM), moreover, the storage stability, pharmacodynamics and pharmacokinetics were investigated. The optimal prescription for MTGME consisted of Maisine 35-1 (oil), Cremophor EL (surfactant) and propylene glycol (PG, cosurfactant). MTGME with a spherical dimension of 58.1 ± 5.86 nm was stable when stored at 4 °C for 3 months. The blood glucose levers (BGL) of diabetic mice were uniformly and significantly decreased by intragastric (i.g.) administration of 1-4 mg/kg MTGME, in which BGL (i.g. 4 mg/kg MTGME) was reduced by 69% during 24 h. The pharmacokinetics study of MTGME (i.g., 20 mg/kg) in Wistar rats showed higher plasma drug concentration (Cmax, 2.9 folds), larger area under curve (AUC, 4.6 folds) and oral bioavailability than those of MTG suspensions. Generally, the MTGME (o/w) showed good effect on controlling hyperglycemia. Therefore, microemulsion can be used as an effective oral drug delivery system to improve the bioavailability of MTG.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...