Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Sens ; 9(4): 2057-2065, 2024 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-38552136

RESUMEN

The construction of ammonia gas sensors with wide detection ranges is important for exhalation diagnosis and environmental pollution monitoring. To achieve a wide detection range, sensitive materials must possess excellent spatial confinement and large active surfaces to enhance gas adsorption. In this study, an ammonia microwave gas sensor with a wide detection range of 10 ppb-0.55 v/v% at room temperature was fabricated by incorporating hollow multishelled-structured BaTiO3 (HoMS-BaTiO3). The effect of the number of shells and the quantity of the sensitive material on the gas-sensing performance was investigated, and two-layered HoMS-BaTiO3 demonstrated the best response at high concentrations (0.15-0.55 v/v%). Conversely, single-layered HoMS-BaTiO3 displayed outstanding performance at low concentrations (10 ppb-0.15 v/v%). The lower the quantity of the sensitive material, the higher the response. This study offers a method for preparing room-temperature ammonia sensors with a wide detection range and reveals the link between the structure and quantity of sensitive materials and gas-sensing performance.


Asunto(s)
Amoníaco , Compuestos de Bario , Microondas , Temperatura , Titanio , Amoníaco/análisis , Compuestos de Bario/química , Titanio/química , Límite de Detección , Gases/análisis , Gases/química
2.
Polymers (Basel) ; 12(9)2020 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-32872521

RESUMEN

This article demonstrated the Au nanoparticles-doped polymer all-optical switches based on photothermal effects. The Au nanoparticles have a strong photothermal effect, which would generate the inhomogeneous thermal field distributions in the waveguide under the laser irradiation. Meanwhile, the polymer materials have the characteristics of good compatibility with photothermal materials, low cost, high thermo-optical coefficient and flexibility. Therefore, the Au nanoparticles-doped polymer material can be applied in optically controlled optical switches with low power consumption, small device dimension and high integration. Moreover, the end-pumping method has a higher optical excitation efficiency, which can further reduce the power consumption of the device. Two kinds of all-optical switching devices have been designed including a base mode switch and a first-order mode switch. For the base mode switch, the power consumption and the rise/fall time were 2.05 mW and 17.3/106.9 µs, respectively at the wavelength of 650 nm. For the first-order mode switch, the power consumption and the rise/fall time were 0.5 mW and 10.2/74.9 µs, respectively at the wavelength of 532 nm. This all-optical switching device has the potential applications in all-optical networks, flexibility device and wearable technology fields.

3.
Polymers (Basel) ; 11(11)2019 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-31752135

RESUMEN

This article demonstrates a dispersed-monolayer graphene-doped polymer/silica hybrid Mach-Zehnder interferometer (MZI) thermal optical switch with low-power consumption and fast response. The polymer/silica hybrid MZI structure reduces the power consumption of the device as a result of the large thermal optical coefficient of the polymer material. To further decrease the response time of the thermal optical switch device, a polymethyl methacrylate, doped with monolayer graphene as a cladding material, has been synthesized. Our study theoretically analyzed the thermal conductivity of composites using the Lewis-Nielsen model. The predicted thermal conductivity of the composites increased by 133.16% at a graphene volume fraction of 0.263 vol %, due to the large thermal conductivity of graphene. Measurements taken of the fabricated thermal optical switch exhibited a power consumption of 7.68 mW, a rise time of 40 µs, and a fall time of 80 µs at a wavelength of 1550 nm.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...