RESUMEN
Chemotherapy (CT) can significantly inhibit tumor growth, metastasis, and recurrence during cancer therapy. People have widely used platinum drugs in cancer treatment. However, as most chemotherapeutic drugs, platinum drugs still have shortcomings such as poor solubility, low cell uptake, nonspecific distribution, multidrug resistance, and adverse side effects. Therefore, we synthesized hollow copper sulfide (CuS) nanocubes with photothermal and photodynamic properties as carriers for Pt(IV) drugs. Hollow CuS nanocubes have attracted considerable interest in the field of cancer photothermal therapy (PTT) using multiple biological windows. Under near-infrared (NIR) laser irradiation, Cu2+ can be reduced into Cu+ in the presence of hydrogen peroxide in the tumor microenvironment. The resulting Cu+ can be used for photodynamic therapy (PDT), which can perform a Fenton-like reaction under acidic conditions (pH 5.5-6.5) and catalyze hydrogen peroxide to produce ·OH in the tumor microenvironment. In addition, compared with Pt(II) drugs, Pt(IV) drugs not only have lower systemic toxicity but also consume glutathione (GSH), thereby increasing reactive oxygen species (ROS) levels in tumor cells and effectively promoting PDT. In this study, we oxidized ethylenediamine platinum chloride to its tetravalent state, loaded the Pt(IV) complexes using hollow CuS nanocubes, and modified the surfaces of the nanoparticles with PEG to improve the EPR effect. The Pt(IV)-loaded hollow CuS nanocubes modified with PEG (Pt(IV)-CuS@PEG) are expected to be used for tumor chemo/photothermal/photodynamic therapy.
RESUMEN
Five halophilic archaeal strains, XH8T, CK5-1T, GDY1T, HW8-1T, and XH21T, were isolated from commercial coarse salt produced in different regions of China. Their 16S rRNA and rpoB' gene sequences indicated that four of the strains (CK5-1T, GDY1T, HW8-1T, and XH21T) represent distinct species within the genus Haloplanus (family Haloferacaceae), while strain XH8T represents a novel genus within the same family. These assignments were supported by phylogenetic and phylogenomic analyses, which showed that strains CK5-1T, GDY1T, HW8-1T, and XH21T cluster with the current species of the genus Haloplanus, while strain XH8T forms a separate branch from the genus Haloplanus. The digital DNA-DNA hybridization and average amino acid identity (AAI) values among these four strains and the current members of the genus Haloplanus were 23.1%-35.2% and 75.9%-83.8%, respectively; and those values between strain XH8T and other genera in the family Haloferacaceae were 18.8%-33.6% and 59.8%-66.6%, respectively, much lower than the threshold values for species demarcation. Strain XH8T may represent a novel genus of the family Haloferacaceae according to the cut-off value of AAI (≤72.1%) proposed to differentiate genera within the family Haloferacaceae. These five strains could be distinguished from the related species according to differential phenotypic characteristics. Based on these results, it is proposed that strain XH8T represents a novel genus within the family Haloferacaceae, and strains CK5-1T, GDY1T, HW8-1T, and XH21T represent four novel species of the genus Haloplanus, respectively. Additionally, these five strains possess genes encoding enzymes critical for the fermentation process in salt-fermented foods, indicating their potential as starter cultures for these applications.
Asunto(s)
ADN de Archaea , Filogenia , ARN Ribosómico 16S , ARN Ribosómico 16S/genética , ADN de Archaea/genética , ADN de Archaea/química , China , Alimentos Fermentados/microbiología , Cloruro de Sodio/metabolismo , Análisis de Secuencia de ADN , ARN Polimerasas Dirigidas por ADN/genética , Composición de Base , Sales (Química)RESUMEN
INTRODUCTION: Heme-oxidized iron regulatory protein 2 (IRP2) ubiquitin ligase-1 (HOIL-1) is believed to contribute to the ubiquitination of IRP2, which facilitates the transcription of transferrin receptor 1 (TfR1) while preventing the transcription of ferroportin-1 (FPN-1). Bioinformatics analysis predicts that nadolol (a ß-blocker) interacts with the HOIL-1. METHOD: The present study is intended to explore whether nadolol suppresses ferroptosis in the brains of rats suffering from ischemic stroke via targeting the HOIL-1/IRP2 pathway. A rat model of ischemic stroke was established by blocking the middle cerebral artery for 2 h plus 24 h reperfusion, and nadolol (2.5 or 5 mg/kg) was given at 1h after reperfusion. HT22 cells were subjected to 12 h of hypoxia, followed by 24 h of reoxygenation for simulating ischemic stroke, and nadolol (0.1 or 0.25 µM) was administered to the culture medium before reoxygenation. RESULTS: The stroke rats showed evident brain injury (increases in neurological deficit score and infarct volume) and ferroptosis, along with up-regulation of IRP2 and TfR1 while downregulation of HOIL-1 and FPN-1; these phenomena were reversed in the presence of nadolol. In the cultured HT22 cells, hypoxia/reoxygenation-induced LDH release, ferroptosis, and changes in the levels of relevant proteins (IRP2, TfR1, HOIL-1, and FPN-1) were also reversed by nadolol. CONCLUSION: In terms of these findings, it is concluded that nadolol can protect the ischemic rats' brains against ferroptosis by targeting the HOIL-1/IRP2 pathway, thereby preventing intracellular iron overload. Thus, nadolol may be a novel indication for treating patients with ischemic stroke.
RESUMEN
BACKGROUND: Sirolimus is increasingly utilized in treating diseases associated with mTOR pathway overactivation. Despite its potential, the lack of evidence regarding its long-term safety across all age groups, particularly in pediatric patients, has limited its further application. This study aims to assess the long-term safety of sirolimus, with a specific focus on its impact on growth patterns in pediatric patients. METHODS: This pooled analysis inlcudes two prospective cohort studies spanning 10 years, including 1,738 participants (aged 5 days to 69 years) diagnosed with tuberous sclerosis and/or lymphangioleiomyomatosis. All participants were mTOR inhibitor-naive and received 1 mg/m²/day of sirolimus, with dose adjustments during a two-week titration period to maintain trough blood concentrations between 5 and 10 ng/ml (maximum dose 2 mg). Indicators of physical growth, hematopoietic, liver, renal function, and blood lipid levels were all primary outcomes and were analyzed. The adverse events and related management were also recorded. RESULTS: Sirolimus administration did not lead to deviations from normal growth ranges, but higher doses exhibited a positive association with Z-scores exceeding 2 SD in height, weight, and BMI. Transient elevations in red blood cell and white blood cell counts, along with hyperlipidemia, were primarily observed within the first year of treatment. Other measured parameters remained largely unchanged, displaying only weak correlations with drug use. Stomatitis is the most common adverse event (920/1738, 52.9%). In adult females, menstrual disorders were observed in 48.5% (112/217). CONCLUSIONS: Sirolimus's long-term administration is not associated with adverse effects on children's physical growth pattern, nor significant alterations in hematopoietic, liver, renal function, or lipid levels. A potential dose-dependent influence on growth merits further exploration. TRIAL REGISTRATION: Pediatric patients: Chinese clinical trial registry, No. ChiCTR-OOB-15,006,535. Adult patients: ClinicalTrials, No. NCT03193892.
Asunto(s)
Sirolimus , Humanos , Sirolimus/efectos adversos , Sirolimus/uso terapéutico , Niño , Femenino , Adolescente , Preescolar , Adulto , Masculino , Lactante , Adulto Joven , Persona de Mediana Edad , Recién Nacido , Anciano , Esclerosis Tuberosa/tratamiento farmacológico , Linfangioleiomiomatosis/tratamiento farmacológico , Estudios ProspectivosRESUMEN
Background: Oliceridine is a novel G protein-biased ligand µ-opioid receptor agonist. This study aimed to assess the pharmacokinetics and safety profile of single-ascending doses of oliceridine fumarate injection in Chinese patients with chronic non-cancer pain. Methods: Conducted as a single-center, open-label trial, this study administered single doses of 0.75, 1.5, and 3.0 mg to 32 adult participants. The trial was conducted in two parts. First, we conducted a preliminary test comprising the administration of a single dose of 0.75mg to 2 participants. Then, we conducted the main trial involving intravenous administration of escalating doses of oliceridine fumarate (0.75 to 3 mg) to 30 participants. Pharmacokinetic (PK) parameters were derived using non-compartmental analysis. Additionally, the safety evaluation encompassed the monitoring of adverse events (AEs). Results: 32 participants were included in the PK and safety analyses. Following a 2-min intravenous infusion of oliceridine fumarate injection (0.75, 1.5, or 3 mg), Cmax and Tmax ranged from 51.293 to 81.914 ng/mL and 0.034 to 0.083 h, respectively. AUC0-t and half-life (t1/2) increased more than proportionally with dosage (1.85-2.084 h). Treatment emergent adverse events (TEAEs) were found to be consistent with the commonly reported adverse effects of opioids, both post-administration and as documented in the original trials conducted in the United States. Critically, no serious adverse events were observed. Conclusion: Oliceridine demonstrated comparable PK parameters and a consistent PK profile in the Chinese population, in line with the PK results observed in the original trials conducted in the United States. Oliceridine was safe and well tolerated in Chinese patients with chronic non-cancer pain at doses ranging from 0.75 mg to 3.0 mg. Trial Registration: The trial is registered at chictr.org.cn (ChiCTR2100047180).
Asunto(s)
Dolor Crónico , Relación Dosis-Respuesta a Droga , Compuestos de Espiro , Tiofenos , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven , China , Dolor Crónico/tratamiento farmacológico , Pueblos del Este de Asia , Compuestos de Espiro/farmacocinética , Tiofenos/farmacocinéticaRESUMEN
BACKGROUND: The role of diverse antibodies in mediating peripheral nerve injury in Guillain-Barré syndrome (GBS) is becoming clearer, but positivity for multiple antibodies in one case is uncommon. To our knowledge, this is the first case involving GBS with positive anti-sulfatide, anti-GT1a, and anti-GT1b antibodies. CASE SUMMARY: A 20-year-old female patient was admitted to the hospital due to weakness of limbs for 5 d, and deterioration of the weakness and muscle aches for 1 d. The patient's limbs were weak, but the tendon reflexes in the part of the limbs were normal. There was no comorbid peripheral nociception or deep sensory dysfunction. She was diagnosed with GBS and was discharged after receiving intravenous human immunoglobulin pulse therapy. CONCLUSION: In this article, the clinical manifestations, neurophysiological examination, and auxiliary examination findings of a GBS patient positive for multiple antibodies were analyzed to improve the identification of the disease by clinical physicians at an early stage.
RESUMEN
Dental caries is a chronic oral infectious disease, and Streptococcus mutans (S. mutans) plays an important role in the formation of dental caries. Trans-cinnamaldehyde (CA) exhibits broad-spectrum antibacterial activity; however, its target and mechanism of action of CA on S. mutans needs to be further explored. In this study, it was verified that CA could inhibit the growth and biofilm formation of S. mutans. Further proteomic analysis identified 33, 55, and 78 differentially expressed proteins (DEPs) in S. mutans treated with CA for 1, 2, and 4 h, respectively. Bioinformatics analysis showed that CA interfered with carbohydrate metabolism, glycolysis, pyruvate metabolism, and the TCA cycle, as well as amino acid metabolism of S. mutans. Protein interactions suggested that pyruvate dehydrogenase (PDH) plays an important role in the antibacterial effect of CA. Moreover, the upstream and downstream pathways related to PDH were verified by various assays, and the results proved that CA not only suppressed the glucose and sucrose consumption and inhibited glucosyltransferase (GTF) and lactate dehydrogenase (LDH) activities but also decreased the ATP production. Interestingly, the protein interaction, qRT-PCR, and molecular docking analysis showed that PDH might be the target of CA to fight S. mutans. In summary, the study shows that CA interferes with the carbohydrate metabolism of bacteria by inhibiting glycolysis and the tricarboxylic acid (TCA) cycle via binding to PDH, which verifies that PDH is a potential target for the development of new drugs against S. mutans.
Asunto(s)
Acroleína , Metabolismo de los Hidratos de Carbono , Simulación del Acoplamiento Molecular , Complejo Piruvato Deshidrogenasa , Streptococcus mutans , Streptococcus mutans/efectos de los fármacos , Streptococcus mutans/genética , Streptococcus mutans/enzimología , Acroleína/farmacología , Acroleína/análogos & derivados , Acroleína/metabolismo , Metabolismo de los Hidratos de Carbono/efectos de los fármacos , Complejo Piruvato Deshidrogenasa/metabolismo , Complejo Piruvato Deshidrogenasa/antagonistas & inhibidores , Antibacterianos/farmacología , Glucólisis/efectos de los fármacos , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/antagonistas & inhibidores , Proteómica/métodos , Caries Dental/microbiología , Ciclo del Ácido Cítrico/efectos de los fármacos , Adenosina Trifosfato/metabolismoRESUMEN
OBJECTIVES: To investigate the effects and mechanism of curculigoside against poststroke depression (PSD). METHODS: In vivo, a PSD rat model was created by combining bilateral common carotid artery occlusion and chronic unpredictable mild stress stimulations. After 4-week modeling and intragastrically administration of curculigoside, the effects of curculigoside on behavior, hippocampal neurogenesis, and hippocampal mitochondrial oxidative phosphorylation (OxPhos) were investigated. In vitro, PSD-like primary neural stem cells (NSCs) model was established by oxygen-glucose deprivation/recovery (OGD/R) combing high-corticosterone (CORT) concentration, followed by treatment with curculigoside. The investigation subsequently examined the impact of curculigoside on mitochondrial OxPhos, proliferation, and differentiation of NSCs under OGD/R + CORT conditions. KEY FINDINGS: In vivo, PSD rats showed significantly depressive behaviors, dysfunctional neurogenesis in hippocampus, as well as decreased hippocampus adenosine triphosphate (ATP) levels, reduced electron transport chain complexes activity, and downregulates mitochondrial transcription factor A (TFAM) and PPAR-gamma coactivator 1 alpha (PGC-1α) expression in hippocampus. In vitro, OGD/R +CORT significantly injured the proliferation and differentiation, as well as impaired the mitochondrial OxPhos in NSCs. Curculigoside treatment was effective in improving these abnormal changes. CONCLUSION: Curculigoside may repair hippocampal neurogenesis in PSD rats by enhancing hippocampal mitochondrial OxPhos, and has shown a great potential for anti-PSD.
RESUMEN
A new cladosporol derivative xylophilum A (1), together with 10 known compounds (2-11), were isolated from the rice fermentation of the fungus Cladosporium xylophilum. Their structures were established by extensive spectroscopic methods and comparison of their NMR data with literatures. The antimicrobial activity of compound 1 against 11 kinds of pathogenic microbial was evaluated, but no significant activity was found (MIC >100 µg/ml).
Asunto(s)
Cladosporium , Pruebas de Sensibilidad Microbiana , Cladosporium/química , Estructura Molecular , Oryza/microbiología , Resonancia Magnética Nuclear Biomolecular , Fermentación , Metabolismo SecundarioRESUMEN
Sodium thiosulfate has been used for decades in the treatment of calciphylaxis and cyanide detoxification, and has recently shown initial therapeutic promise in critical diseases such as neuronal ischemia, diabetes mellitus, heart failure and acute lung injury. However, the precise mechanism of sodium thiosulfate remains incompletely defined and sometimes contradictory. Although sodium thiosulfate has been widely accepted as a donor of hydrogen sulfide (H2S), emerging findings suggest that it is the executive signaling molecule for H2S and that its effects may not be dependent on H2S. This article presents an overview of the current understanding of sodium thiosulfate, including its synthesis, biological characteristics, and clinical applications of sodium thiosulfate, as well as the underlying mechanisms in vivo. We also discussed the interplay of sodium thiosulfate and H2S. Our review highlights sodium thiosulfate as a key player in sulfide signaling with the broad clinical potential for the future.
Asunto(s)
Sulfuro de Hidrógeno , Transducción de Señal , Tiosulfatos , Tiosulfatos/química , Sulfuro de Hidrógeno/metabolismo , Sulfuro de Hidrógeno/química , Humanos , Animales , Transducción de Señal/efectos de los fármacosRESUMEN
The increasing prevalence of depression is a major societal burden. The etiology of depression involves multiple mechanisms. Thus, the outcomes of the currently used treatment for depression are suboptimal. The anti-depression effects of traditional Chinese medicine (TCM) formulations have piqued the interest of the scientific community owing to their multi-ingredient, multi-target, and multi-link characteristics. According to the TCM theory, the functioning of the kidney is intricately linked to that of the brain. Clinical observations have indicated the therapeutic potential of the kidney-tonifying formula Erxian Decoction (EXD) in depression. This review aimed to comprehensively search various databases to summarize the anti-depression effects of EXD, explore the underlying material basis and mechanisms, and offer new suggestions and methods for the clinical treatment of depression. The clinical and preclinical studies published before 31 August 2023, were searched in PubMed, Google Scholar, China National Knowledge Infrastructure, and Wanfang Database. This review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Clinical studies have demonstrated that EXD exhibits therapeutic properties in patients with menopausal depression, postpartum depression, and maintenance hemodialysis-associated depression. Meanwhile, preclinical studies have reported that EXD and its special chemical markers exert anti-depression effects by modulating monoamine neurotransmitter levels, inhibiting neuroinflammation, augmenting synaptic plasticity, exerting neuroprotective effects, regulating the hypothalamic-pituitary-adrenal axis, promoting neurogenesis, and altering cerebrospinal fluid composition. Thus, the anti-depression effects of EXD are mediated through multiple ingredients, targets, and links. However, further clinical and animal studies are needed to investigate the anti-depression effects of EXD and the underlying mechanisms and offer additional evidence and recommendations for its clinical application. Moreover, strategies must be developed to improve the quality control of EXD. This review provides an overview of EXD and guidance for future research direction.
RESUMEN
Targeting telomere maintenance has emerged as a promising strategy for hepatocellular carcinoma (HCC) treatment. However, given the duality of the telomere-telomerase axis in telomere maintenance, a comprehensive strategy is urgently needed. Herein, we develop a poly(amino acid) (D-PAAs)-based strategy for spatiotemporal codelivery of telomerase inhibitor, BIBR1523, and AKT inhibitor, isobavachalcone. By leveraging D-PAAs' modifiability, we synthesize polymer-inhibitor conjugates (PB and PI) and a folic acid-decorated tumor-targeting vector (PF). These building blocks undergo micellization to fabricate a codelivery nanomedicine (P-BI@P-FA) by exploiting D-PAAs' noncovalent assembly. P-BI@P-FA improves the pharmacokinetics, tumor selectivity, and bioavailability of small molecule inhibitors and initiates a dual telomere-specific inhibition by combining telomerase deactivation with telomere disruption. Furthermore, a hybrid tumor-targeting magnetic nanosystem is designed using D-PAAs and manganese dioxide to showcase magnetic resonance imaging capacities. Our D-PAAs-based strategy addresses the pressing need for telomere-specific HCC treatment while allowing for diagnostic application, presenting a promising avenue for nanomedicine design.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Imagen por Resonancia Magnética , Nanomedicina , Telomerasa , Telómero , Carcinoma Hepatocelular/diagnóstico por imagen , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Telomerasa/antagonistas & inhibidores , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/tratamiento farmacológico , Humanos , Nanomedicina/métodos , Telómero/metabolismo , Imagen por Resonancia Magnética/métodos , Animales , Ratones , Línea Celular Tumoral , Aminoácidos/química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/uso terapéuticoRESUMEN
Background: Epilepsy is one of the most common serious chronic neurological disorders, which can have a serious negative impact on individuals, families and society, and even death. With the increasing application of machine learning techniques in medicine in recent years, the integration of machine learning with epilepsy has received close attention, and machine learning has the potential to provide reliable and optimal performance for clinical diagnosis, prediction, and precision medicine in epilepsy through the use of various types of mathematical algorithms, and promises to make better parallel advances. However, no bibliometric assessment has been conducted to evaluate the scientific progress in this area. Therefore, this study aims to visually analyze the trend of the current state of research related to the application of machine learning in epilepsy through bibliometrics and visualization. Methods: Relevant articles and reviews were searched for 2004-2023 using Web of Science Core Collection database, and bibliometric analyses and visualizations were performed in VOSviewer, CiteSpace, and Bibliometrix (R-Tool of R-Studio). Results: A total of 1,284 papers related to machine learning in epilepsy were retrieved from the Wo SCC database. The number of papers shows an increasing trend year by year. These papers were mainly from 1,957 organizations in 87 countries/regions, with the majority from the United States and China. The journal with the highest number of published papers is EPILEPSIA. Acharya, U. Rajendra (Ngee Ann Polytechnic, Singapore) is the authoritative author in the field and his paper "Deep Convolutional Neural Networks for Automated Detection and Diagnosis of Epileptic Seizures Using EEG Signals" was the most cited. Literature and keyword analysis shows that seizure prediction, epilepsy management and epilepsy neuroimaging are current research hotspots and developments. Conclusions: This study is the first to use bibliometric methods to visualize and analyze research in areas related to the application of machine learning in epilepsy, revealing research trends and frontiers in the field. This information will provide a useful reference for epilepsy researchers focusing on machine learning.
RESUMEN
BACKGROUND: The incidence and mortality of colorectal cancer (CRC) are among the highest in the world, and its occurrence and development are closely related to tumor neovascularization. When the balance between pigment epithelium-derived factors (PEDF) that inhibit angiogenesis and vascular endothelial growth factors (VEGF) that stimulate angiogenesis is broken, angiogenesis is out of control, resulting in tumor development. Therefore, it is very necessary to find more therapeutic targets for CRC for early intervention and later treatment. AIM: To investigate the expression and significance of PEDF, VEGF, and CD31-stained microvessel density values (CD31-MVD) in normal colorectal mucosa, adenoma, and CRC. METHODS: In this case-control study, we collected archived wax blocks of specimens from the Digestive Endoscopy Center and the General Surgery Department of Chengdu Second People's Hospital from April 2022 to October 2022. Fifty cases of specimen wax blocks were selected as normal intestinal mucosa confirmed by electronic colonoscopy and concurrent biopsy (normal control group), 50 cases of specimen wax blocks were selected as colorectal adenoma confirmed by electronic colonoscopy and pathological biopsy (adenoma group), and 50 cases of specimen wax blocks were selected as CRC confirmed by postoperative pathological biopsy after inpatient operation of general surgery (CRC group). An immunohistochemical staining experiment was carried out to detect PEDF and VEGF expression in three groups of specimens, analyze their differences, study the relationship between the two and clinicopathological factors in CRC group, record CD31-MVD in the three groups, and analyze the correlation of PEDF, VEGF, and CD31-MVD in the colorectal adenoma group and the CRC group. The F test or adjusted F test is used to analyze measurement data statistically. Kruskal-Wallis rank sum test was used between groups for ranked data. The chi-square test, adjusted chi-square test, or Fisher's exact test were used to compare the rates between groups. All differences between groups were compared using the Bonferroni method for multiple comparisons. Spearman correlation analysis was used to test the correlation of the data. The test level (α) was 0.05, and a two-sided P< 0.05 was considered statistically significant. RESULTS: The positive expression rate and expression intensity of PEDF were gradually decreased in the normal control group, adenoma group, and CRC group (100% vs 78% vs 50%, χ2 = 34.430, P < 0.001; ++~++ vs +~++ vs -~+, H = 94.059, P < 0.001), while VEGF increased gradually (0% vs 68% vs 96%, χ2 = 98.35, P < 0.001; - vs -~+ vs ++~+++, H = 107.734, P < 0.001). In the CRC group, the positive expression rate of PEDF decreased with the increase of differentiation degree, invasion depth, lymph node metastasis, distant metastasis, and TNM stage (χ2 = 20.513, 4.160, 5.128, 6.349, 5.128, P < 0.05); the high expression rate of VEGF was the opposite (χ2 = 10.317, 13.134, 17.643, 21.844, 17.643, P < 0.05). In the colorectal adenoma group, the expression intensity of PEDF correlated negatively with CD31-MVD (r = -0.601, P < 0.001), whereas VEGF was not significantly different (r = 0.258, P = 0.07). In the CRC group, the expression intensity of PEDF correlated negatively with the expression intensity of CD31-MVD and VEGF (r = -0.297, P < 0.05; r = -0.548, P < 0.05), while VEGF expression intensity was positively related to CD31-MVD (r = 0.421, P = 0.002). CONCLUSION: It is possible that PEDF can be used as a new treatment and prevention target for CRC by upregulating the expression of PEDF while inhibiting the expression of VEGF.
RESUMEN
Fungi have different genetic expression abilities and biosynthetic pathways under different cultivation conditions, which can produce various secondary metabolites. The "one strain many compounds" strategy is used to activate silent biosynthetic genes of fungi to produce various compounds, which is an effective method. In order to discover various new compounds in the edible fungus Pholiota nameko, a fermentation strategy involving precursor feeding and enzyme inhibitor addition has been employed. A new illudane sesquiterpene (1), along with one known indole diterpenoid alkaloid, cladosporine A (2) were isolated from the extracts of liquid culture of P. nameko. The new compound was identified by combination of 1D and 2D NMR, MS, optical rotation, and ECD calculations. We conducted experiments on the cytotoxicity of all isolated compounds on three cancer cell lines, but we did not observe any significant cytotoxicity (IC50 > 40 µM).
RESUMEN
Histamine, found abundantly in salt-fermented foods, poses a risk of food poisoning. Natronobeatus ordinarius, a halophilic archaeon isolated from a salt lake, displayed a strong histamine degradation ability. Its histamine oxidase (HOD) gene was identified (hodNbs). This is the first report of an archaeal HOD. The HODNbs protein was determined to be a tetramer with a molecular weight of 307 kDa. HODNbs displayed optimum activity at 60-65 °C, 1.5-2.0 M NaCl, and pH 6.5. Notably, within the broad NaCl range between 0.5 and 2.5 M, HODNbs retained above 50% of its maximum activity. HODNbs exhibited good thermal stability, pH stability, and salinity tolerance. HODNbs was able to degrade various biogenic amines. The Vmax of HODNbs for histamine was 0.29 µmol/min/mg, and the Km was 0.56 mM. HODNbs exhibited high efficiency in histamine removal from fish sauce, namely, 100 µg of HODNbs degraded 5.63 mg of histamine (37.9%) in 10 g of fish sauce within 24 h at 50 °C. This study showed that HODNbs with excellent enzymatic properties has promising application potentials to degrade histamine in high-salt foods.
Asunto(s)
Histamina , Oxidorreductasas , Animales , Histamina/metabolismo , Archaea/metabolismo , Cloruro de Sodio , Aminas Biogénicas/metabolismo , Inocuidad de los AlimentosRESUMEN
The diversity of nematode-trapping fungi (NTF) holds significant theoretical and practical implications in the study of adaptive evolution and the bio-control of harmful nematodes. However, compared to terrestrial ecosystems, research on aquatic NTF is still in its early stages. During a survey of NTF in six watersheds in Yunnan Province, China, we isolated 10 taxa from freshwater sediment. Subsequent identification based on morphological and multigene (ITS, TEF1-α, and RPB2) phylogenetic analyses inferred they belong to five new species within Arthrobotrys. This paper provides a detailed description of these five novel species (Arthrobotrys cibiensis, A. heihuiensis, A. jinshaensis, A. yangbiensis, and A. yangjiangensis), contributing novel insights for further research into the diversity of NTF and providing new material for the biological control of aquatic harmful nematodes. Additionally, future research directions concerning aquatic NTF are also discussed.
RESUMEN
The erythromycin polyketide compound TMC-154 is a secondary metabolite that is isolated from the rhizospheric fungus Clonostachys rogersoniana associated with Panax notoginseng, which possesses antibacterial activity. However, its antibacterial mechanism has not been investigated thus far. In this study, proteomics coupled with bioinformatics approaches was used to explore the antibacterial mechanism of TMC-154. KEGG pathway enrichment analysis indicated that eight signaling pathways were associated with TMC-154, including oxidative phosphorylation, cationic antimicrobial peptide (CAMP) resistance, benzoate degradation, heme acquisition systems, glycine/serine and threonine metabolism, beta-lactam resistance, ascorbate and aldarate metabolism, and phosphotransferase system (PTS). Cell biology experiments confirmed that TMC-154 could induce reactive oxygen species (ROS) generation in Streptococcus pyogenes; moreover, TMC-154-induced antibacterial effects could be blocked by the inhibition of ROS generation with the antioxidant N-acetyl L-cysteine. In addition, TMC-154 combined with ciprofloxacin or chloramphenicol had synergistic antibacterial effects. These findings indicate the potential of TMC-154 as a promising drug to treat S. pyogenes infections. SIGNIFICANCE: Streptococcus pyogenes is a nearly ubiquitous human pathogen that causes a variety of diseases ranging from mild pharyngitis and skin infection to fatal sepsis and toxic heat shock syndrome. With the increasing incidence of known antibiotic resistance, there is an urgent need to find novel drugs with good antibacterial activity against S. pyogenes. In this study, we found that TMC-154, a secondary metabolite from the fungus Clonostachys rogersoniana, inhibited the growth of various bacteria, including Staphylococcus aureus, S. pyogenes, Streptococcus mutans, Pseudomonas aeruginosa and Vibrio parahemolyticus. Proteomic analysis combined with cell biology experiments revealed that TMC-154 stimulated ROS generation to exert antibacterial effects against S. pyogenes. This study provides potential options for the treatment of S. pyogenes infections in the future.
Asunto(s)
Eritromicina , Streptococcus pyogenes , Humanos , Eritromicina/farmacología , Especies Reactivas de Oxígeno , Proteómica , Antibacterianos/farmacología , Pruebas de Sensibilidad MicrobianaRESUMEN
Spatial heterogeneity significantly enhances biodiversity, representing one of the ecology's most enduring paradigms. However, many studies have found decreasing, humped, and neutral correlations between spatial heterogeneity and biodiversity (heterogeneity-diversity relationships, HDR). These findings have pushed this widely accepted theory back into controversy. Microbial HDR research has lagged compared to that of plants and animals. Nevertheless, microbes have features that add a temporal-scale perspective to HDR research that is critical to understanding patterns of HDR. In this study, 157 microcosms with different types spatial heterogeneity were set up to map the HDR of microorganisms and their temporal dynamics using high-throughput sequencing techniques. The results show that the following: 1. Spatial heterogeneity can significantly alter microbial diversity in microcosmic systems. Changes in microbial diversity, in turn, lead to changes in environmental conditions. These changes caused microorganisms to exhibit increasing, decreasing, humped, U-shaped, and neutral HDR patterns. 2. The emergence of HDR patterns is characterized by temporal dynamics. Additionally, the HDR patterns generated by spatial structural and compositional heterogeneity exhibit inconsistent emergence times. These results suggest that the temporal dynamics of HDR may be one of the reasons for the coexistence of multiple patterns in previous studies. The feedback regulation between spatial heterogeneity-biodiversity-environmental conditions is an essential reason for the temporally dynamics of HDR patterns. All future ecological studies should pay attention to the temporal dynamic patterns of ecological factors.