Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Natl Sci Rev ; 11(7): nwae209, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39071098

RESUMEN

Conventional bone scaffolds, which are mainly ascribed to highly active osteoclasts and an inflammatory microenvironment with high levels of reactive oxygen species and pro-inflammatory factors, barely satisfy osteoporotic defect repair. Herein, multifunctional self-assembled supramolecular fiber hydrogels (Ce-Aln gel) consisting of alendronate (Aln) and cerium (Ce) ions were constructed for osteoporotic bone defect repair. Based on the reversible interaction and polyvalent cerium ions, the Ce-Aln gel, which was mainly composed of ionic coordination and hydrogen bonds, displayed good injectability and autocatalytic amplification of the antioxidant effect. In vitro studies showed that the Ce-Aln gel effectively maintained the biological function of osteoblasts by regulating redox homeostasis and improved the inflammatory microenvironment to enhance the inhibitory effect on osteoclasts. Ribonucleic acid (RNA) sequencing further revealed significant downregulation of various metabolic pathways, including apoptosis signaling, hypoxia metabolism and tumor necrosis factor-alpha (TNF-α) signaling via the nuclear factor kappa-B pathway after treatment with the Ce-Aln gel. In vivo experiments showed that the clinical drug-based Ce-Aln gel effectively promoted the tissue repair of osteoporotic bone defects by improving inflammation and inhibiting osteoclast formation at the defect. Notably, in vivo systemic osteoporosis was significantly ameliorated, highlighting the strong potential of clinical translation for precise therapy of bone defects.

2.
bioRxiv ; 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39071313

RESUMEN

Horizontal gene transfer is a key driver of bacterial evolution, but it also presents severe risks to bacteria by introducing invasive mobile genetic elements. To counter these threats, bacteria have developed various defense systems, including prokaryotic Argonautes (pAgo) and the D NA D efense M odule DdmDE system. Through biochemical analysis, structural determination, and in vivo plasmid clearance assays, we elucidate the assembly and activation mechanisms of DdmDE, which eliminates small, multicopy plasmids. We demonstrate that DdmE, a pAgo-like protein, acts as a catalytically inactive, DNA-guided, DNA-targeting defense module. In the presence of guide DNA, DdmE targets plasmids and recruits a dimeric DdmD, which contains nuclease and helicase domains. Upon binding to DNA substrates, DdmD transitions from an autoinhibited dimer to an active monomer, which then translocates along and cleaves the plasmids. Together, our findings reveal the intricate mechanisms underlying DdmDE-mediated plasmid clearance, offering fundamental insights into bacterial defense systems against plasmid invasions.

3.
J Colloid Interface Sci ; 669: 825-834, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38749221

RESUMEN

In this work, the nanocables of few-layered ReS2 nanosheets sandwiched between carbon nanotubes (CNTs) and nitrogen-doped amorphous carbon (NC) coating (i.e., CNT@ReS2@NC) are synthesized as high-performance anodes of both potassium-ion batteries (PIBs) and sodium-ion batteries (SIBs). The CNT@ReS2@NC nanocables with dual carbon modifications have the several advantages for efficient K+/Na+ storage. The few-layered ReS2 nanosheets with a wide interlayer spacing of 0.64 nm contribute to accelerated reaction kinetics for fast K+/Na+ intercalation/extraction. The carbon nanotube skeleton with a hollow interior can effectively relieve the volume change and serve as a robust conductive network to boost structural stability. The NC layer provides rich defects as active sites and suppresses the shuttle effect of polysulfides produced in discharge/charge processes. Consequently, the CNT@ReS2@NC nanocables possess outstanding electrochemical performance in both PIBs and SIBs owing to the synergistic effect from the different components. A long cycling lifespan of 3500 cycles with a maintained discharge capacity of 125 mAh/g is achieved for CNT@ReS2@NC at 1 A/g in PIBs. In SIBs, it can keep a high capacity of 202 mAh/g over 3000 cycles at 5 A/g. Moreover, the CNT@ReS2@NC||Na3V2(PO4)3 full cell can exhibit remarkable cycling performance, yielding a low capacity decay rate of 0.019 % per cycle over 1000 cycles at 2C.

4.
Bioact Mater ; 38: 374-383, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38770429

RESUMEN

Implant-related osteomyelitis is a formidable hurdle in the clinical setting and is characterized by inflammation, infection, and consequential bone destruction. Therefore, effective reactive oxygen species (ROS) scavenging, bacterial killing, and subsequent bone tissue repair are urgently needed for the treatment of difficult-to-heal osteomyelitis. Herein, we utilized the eddy-thermal effect of magnesium (Mg) implants under an alternating magnetic field (AMF) for the controlled release of H2 gas and ions (OH- and Mg2+) for the treatment of osteomyelitis. H2 released by Mg rods under AMFs effectively scavenged cytotoxic ROS, exhibiting anti-inflammatory effects and consequently disrupting the environment of bacterial infections. In addition, the OH- hindered the energy metabolism of bacteria by effectively neutralizing protons within the microenvironment. Moreover, H2 impaired the permeability of bacterial membranes and expedited the damage induced by OH-. This synergistic AMF-induced H2 and proton depletion treatment approach not only killed both gram-negative and gram-positive bacteria but also effectively treated bacterial infections (abscesses and osteomyelitis). Moreover, Mg2+ released from the Mg rods enhanced and accelerated the process of bone osteogenesis. Overall, our work cleverly exploited the eddy-thermal effect and chemical activity of Mg implants under AMFs, aiming to eliminate the inflammatory environment and combat bacterial infections by the simultaneous release of H2, OH-, and Mg2+, thereby facilitating tissue regeneration. This therapeutic strategy achieved multiple benefits in one, thus presenting a promising avenue for clinical application.

5.
Nat Struct Mol Biol ; 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627580

RESUMEN

As one of the most prevalent anti-phage defense systems in prokaryotes, Gabija consists of a Gabija protein A (GajA) and a Gabija protein B (GajB). The assembly and function of the Gabija system remain unclear. Here we present cryo-EM structures of Bacillus cereus GajA and GajAB complex, revealing tetrameric and octameric assemblies, respectively. In the center of the complex, GajA assembles into a tetramer, which recruits two sets of GajB dimer at opposite sides of the complex, resulting in a 4:4 GajAB supramolecular complex for anti-phage defense. Further biochemical analysis showed that GajA alone is sufficient to cut double-stranded DNA and plasmid DNA, which can be inhibited by ATP. Unexpectedly, the GajAB displays enhanced activity for plasmid DNA, suggesting a role of substrate selection by GajB. Together, our study defines a framework for understanding anti-phage immune defense by the GajAB complex.

6.
PeerJ Comput Sci ; 10: e1978, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38660204

RESUMEN

Linearly homomorphic signature (LHS) allows the acquisition of a new legal signature using the homomorphic operation of the original signatures. However, the public composability of LHS also prevents it from being used in some scenarios where the combiner needs to be designated. The LZZ22 scheme designates a combiner and preserves the signature structure by having the signer and the designated combiner share a secret. However, LZZ22 is not secure enough because the secret is constant. Here, we first prove that there is a polynomial time adversary that can crack the secret in LZZ22 through multiple signature queries. Then, we propose a new scheme, which realizes all the functions of LZZ22 and fixes the security problem by changing the secret with the message. The proposed scheme is shown to be secure against existential forgery on adaptively chosen subspace attacks under the random oracle model. Finally, we detail how to apply our scheme to the proxy signature and perform it on a personal computer, and the results show that our scheme is efficient.

7.
Nat Struct Mol Biol ; 31(3): 413-423, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38177683

RESUMEN

Escherichia coli Septu system, an anti-phage defense system, comprises two components: PtuA and PtuB. PtuA contains an ATPase domain, while PtuB is predicted to function as a nuclease. Here we show that PtuA and PtuB form a stable complex with a 6:2 stoichiometry. Cryo-electron microscopy structure of PtuAB reveals a distinctive horseshoe-like configuration. PtuA adopts a hexameric arrangement, organized as an asymmetric trimer of dimers, contrasting the ring-like structure by other ATPases. Notably, the three pairs of PtuA dimers assume distinct conformations and fulfill unique roles in recruiting PtuB. Our functional assays have further illuminated the importance of the oligomeric assembly of PtuAB in anti-phage defense. Moreover, we have uncovered that ATP molecules can directly bind to PtuA and inhibit the activities of PtuAB. Together, the assembly and function of the Septu system shed light on understanding other ATPase-containing systems in bacterial immunity.


Asunto(s)
Bacteriófagos , Inflamasomas , Microscopía por Crioelectrón , Bacteriófagos/metabolismo , Adenosina Trifosfatasas/metabolismo , Escherichia coli/metabolismo
8.
Asian J Surg ; 47(4): 1756-1762, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38228457

RESUMEN

BACKGROUND: As an innovative treatment, stapled transperineal rectovaginal fistula repair (STR) for rectovaginal fistula (RVF) has demonstrated effectiveness in preliminary reports. This study aims to compare STR with rectal mucosal advancement flap repair (RAF), a widely utilized surgical procedure, for the surgical outcome of the low- and mid-level RVF. METHODS: In this retrospective cohort study, patients with low- and mid-level RVF who underwent STR or RAF were included from both the Sixth Affiliated Hospital of Sun Yat-sen University and Xi'an Daxing Hospital. Among the 99 total patients, 77 underwent STR and 22 underwent RAF. Patient demographics, operative data, and outcomes were collected and analyzed. Recurrence rate and associated risk factors were evaluated. RESULTS: There were no statistically significant differences among patients in terms of clinical characteristics like age, BMI, aetiology, and fistula features. During the follow-up period of 20 months (interquartile range 3.0-41.8 months), a total of 28 patients relapsed, with a significantly lower recurrence rate in the STR group (20.8 %) than in the RAF group (54.6 %) (P = 0.005). In the multivariate Cox analysis, STR was an independent protective factor against recurrence (HR: 0.37, 95%CI: 0.17-0.79, P = 0.01). Logistic regression indicated that there was no statistically significant difference between these two procedures in terms of surgical complications (OR: 0.53, 95%CI: 0.19-1.48, P = 0.23). CONCLUSION: For low- and mid-level RVF, STR may be an alternative option for treatment modality that offers a lower recurrence rate, without observed disadvantage in terms of surgical complication rates.


Asunto(s)
Fístula Rectovaginal , Recto , Femenino , Humanos , Fístula Rectovaginal/etiología , Fístula Rectovaginal/cirugía , Estudios Retrospectivos , Recto/cirugía , Colgajos Quirúrgicos , Factores de Riesgo , Resultado del Tratamiento
9.
Neural Netw ; 169: 698-712, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37976594

RESUMEN

Synthetic aperture radar (SAR) images are widely used in remote sensing. Interpreting SAR images can be challenging due to their intrinsic speckle noise and grayscale nature. To address this issue, SAR colorization has emerged as a research direction to colorize gray scale SAR images while preserving the original spatial information and radiometric information. However, this research field is still in its early stages, and many limitations can be highlighted. In this paper, we propose a full research line for supervised learning-based approaches to SAR colorization. Our approach includes a protocol for generating synthetic color SAR images, several baselines, and an effective method based on the conditional generative adversarial network (cGAN) for SAR colorization. We also propose numerical assessment metrics for the problem at hand. To our knowledge, this is the first attempt to propose a research line for SAR colorization that includes a protocol, a benchmark, and a complete performance evaluation. Our extensive tests demonstrate the effectiveness of our proposed cGAN-based network for SAR colorization. The code is available at https://github.com/shenkqtx/SAR-Colorization-Benchmarking-Protocol.


Asunto(s)
Benchmarking , Aprendizaje Profundo , Radar , Conocimiento
10.
Shock ; 61(4): 592-600, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37878490

RESUMEN

ABSTRACT: Severe burns are associated with massive tissue destruction and cell death where nucleus histones and other damage-associated molecular patterns are released into the circulation and contribute to the pathogenesis of multiple-organ dysfunction. Currently, there is limited information regarding the pathophysiology of extracellular histones after burns, and the mechanisms underlying histone-induced vascular injury are not fully understood. In this study, by comparing the blood samples from healthy donors and burn patients, we confirmed that burn injury promoted the release of extracellular histones into the circulation, evidenced by increased plasma levels of histones correlating with injury severity. The direct effects of extracellular histones on human endothelial monolayers were examined, and the results showed that histones caused cell-cell adherens junction discontinuity and barrier dysfunction in a dose-related manner. Like burn patients, mice subjected to a scald burn covering 25% total body surface area also displayed significantly increased plasma histones. Intravital microscopic analysis of mouse mesenteric microcirculation indicated that treatment with a histone antibody greatly attenuated burn-induced plasma leakage in postcapillary venules, supporting the pathogenic role of extracellular histones in the development of microvascular barrier dysfunction during burns. At the molecular level, intrigued by the recent discovery of C-type lectin domain family 2 member D (Clec2d) as a novel receptor of histones, we tested its potential involvement in the histone interaction with endothelial cells. Indeed, we identified abundant expression of Clec2d in vascular endothelial cells. Further proximity ligation assay demonstrated a close association between extracellular histones and endothelial expressing Clec2d. Functionally, in vivo administration of an anti-Clec2d antibody attenuated burn-induced plasma leakage across mesenteric microvessels. Consistently, Clec2d knockdown in endothelial cells partially inhibited histone-induced endothelial barrier dysfunction. Together, our data suggest that burn injury-induced increases in circulating histones contribute to microvascular leakage and endothelial barrier dysfunction via a mechanism involving the endothelial Clec2d receptor.


Asunto(s)
Quemaduras , Histonas , Humanos , Ratones , Animales , Histonas/metabolismo , Células Endoteliales/metabolismo , Lectinas Tipo C/metabolismo , Endotelio Vascular/patología , Quemaduras/patología
11.
Mol Cell ; 83(24): 4586-4599.e5, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38096827

RESUMEN

SIR2-HerA, a bacterial two-protein anti-phage defense system, induces bacterial death by depleting NAD+ upon phage infection. Biochemical reconstitution of SIR2, HerA, and the SIR2-HerA complex reveals a dynamic assembly process. Unlike other ATPases, HerA can form various oligomers, ranging from dimers to nonamers. When assembled with SIR2, HerA forms a hexamer and converts SIR2 from a nuclease to an NAD+ hydrolase, representing an unexpected regulatory mechanism mediated by protein assembly. Furthermore, high concentrations of ATP can inhibit NAD+ hydrolysis by the SIR2-HerA complex. Cryo-EM structures of the SIR2-HerA complex reveal a giant supramolecular assembly up to 1 MDa, with SIR2 as a dodecamer and HerA as a hexamer, crucial for anti-phage defense. Unexpectedly, the HerA hexamer resembles a spiral staircase and exhibits helicase activities toward dual-forked DNA. Together, we reveal the supramolecular assembly of SIR2-HerA as a unique mechanism for switching enzymatic activities and bolstering anti-phage defense strategies.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Sirtuinas , Fagos T , Adenosina Trifosfatasas/genética , Proteínas Bacterianas/genética , NAD , Sirtuinas/metabolismo , Escherichia coli/enzimología , Escherichia coli/virología , Proteínas de Escherichia coli/metabolismo
12.
Sci Bull (Beijing) ; 68(16): 1772-1783, 2023 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-37516662

RESUMEN

Patients with hepatocellular carcinoma (HCC) display poor prognosis because HCC involves a high rate of metastasis and regrowth. Herein, we present an effective strategy to treat HCC using magnetic hyperthermia therapy (MHT)-enhanced cancer immunotherapy combined with transcatheter arterial embolization (TAE). Uniform liquid metal microspheres (LM MSs) obtained by microfluidic technology with powerful eddy-thermal effects could be used as both MHT and TAE agents for effective cancer therapy. The eddy-thermal effect of LM MSs demonstrated effective MHT, whereas LM MS-induced MHT boosted the immune system, promoted immune cell infiltration, and further stimulated powerful immune responses to suppress the growth of distant tumors, together with immune checkpoint blockade therapy. Furthermore, LM MS-lipiodol dispersion displayed excellent efficacy of the combined MHT-TAE in the orthotopic rabbit liver cancer model. Our work not only highlighted that LM MSs could act as effective MHT agents to achieve MHT-enhanced immunotherapy but also presented the significant promise of combining MHT with TAE for the efficient treatment of large orthotopic liver tumors.


Asunto(s)
Carcinoma Hepatocelular , Embolización Terapéutica , Hipertermia Inducida , Neoplasias Hepáticas , Animales , Conejos , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/terapia , Microesferas , Metales , Inmunoterapia , Fenómenos Magnéticos
13.
Nature ; 621(7977): 154-161, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37494956

RESUMEN

Although eukaryotic and long prokaryotic Argonaute proteins (pAgos) cleave nucleic acids, some short pAgos lack nuclease activity and hydrolyse NAD(P)+ to induce bacterial cell death1. Here we present a hierarchical activation pathway for SPARTA, a short pAgo consisting of an Argonaute (Ago) protein and TIR-APAZ, an associated protein2. SPARTA progresses through distinct oligomeric forms, including a monomeric apo state, a monomeric RNA-DNA-bound state, two dimeric RNA-DNA-bound states and a tetrameric RNA-DNA-bound active state. These snapshots together identify oligomerization as a mechanistic principle of SPARTA activation. The RNA-DNA-binding channel of apo inactive SPARTA is occupied by an auto-inhibitory motif in TIR-APAZ. After the binding of RNA-DNA, SPARTA transitions from a monomer to a symmetric dimer and then an asymmetric dimer, in which two TIR domains interact through charge and shape complementarity. Next, two dimers assemble into a tetramer with a central TIR cluster responsible for hydrolysing NAD(P)+. In addition, we observe unique features of interactions between SPARTA and RNA-DNA, including competition between the DNA 3' end and the auto-inhibitory motif, interactions between the RNA G2 nucleotide and Ago, and splaying of the RNA-DNA duplex by two loops exclusive to short pAgos. Together, our findings provide a mechanistic basis for the activation of short pAgos, a large section of the Ago superfamily.


Asunto(s)
Proteínas Argonautas , Células Procariotas , Apoproteínas/química , Apoproteínas/metabolismo , Proteínas Argonautas/química , Proteínas Argonautas/clasificación , Proteínas Argonautas/metabolismo , ADN/metabolismo , Activación Enzimática , NAD/metabolismo , Células Procariotas/metabolismo , ARN/metabolismo
14.
Front Pediatr ; 11: 1158286, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37388282

RESUMEN

Introduction: Since December 2012, the prophylactic use of caffeine to treat AOP in preterm infants has been approved in China. This study aimed to investigate the relationship between early caffeine treatment initiation and the incidence of oxygen radical diseases in neonatology (ORDIN) in Chinese preterm infants. Methods: A retrospective study was conducted at two hospitals in South China, involving 452 preterm infants with gestational ages less than 37 weeks. The infants were divided into early (227 cases, initiating within 48 h after birth) and late (225 cases, initiating over 48 h after birth) caffeine treatment group. Logistic regression analysis and Receiver Operating Characteristic (ROC) curves were used to evaluate the association between early caffeine treatment and the incidence of ORDIN. Results: The results showed that extremely preterm infants in early treatment group had a lower incidence of PIVH and ROP compared to those in the late treatment group (PIVH, 20.1% versus 47.8%, P = 0.02; ROP, 70.8% versus 89.9%, P = 0.025). Very preterm infants in the early treatment group had a lower incidence of BPD and PIVH compared to those in the late treatment group (BPD, 43.8% versus 63.1%, P = 0.002; PIVH, 9.0% versus 22.3%, P = 0.001). Moreover, VLBW infants who received early caffeine treatment exhibited a decreased incidence of BPD (55.9% versus 80.9%, P = 0.000), PIVH (11.8% versus 33.1%, P = 0.000), and ROP (69.9% versus 79.8%, P = 0.043) compared to those in the late treatment group. Infants in the early caffeine treatment showed a reduced likelihood of PIVH (adjusted odds ratio, 0.407; 95%CI, 0.188-0.846) but did not exhibit a significant association with other terms of ORDIN. ROC analysis revealed that early initiation of caffeine treatment was associated with lower risk of BPD, PIVH, and ROP in preterm infants. Discussion: In conclusion, this study demonstrates that early initiation of caffeine treatment is associated with a decreased incidence of PIVH in Chinese preterm infants. Further prospective investigations are necessary to verify and elucidate the precise effects of early caffeine treatment on complications in preterm Chinese infants.

15.
Int Ophthalmol ; 43(10): 3911-3921, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37389764

RESUMEN

AIM: To compare myopia progression in Chinese schoolchildren before and after the COVID-19 pandemic home confinement. METHODS: This study was done through the data searched from PubMed, Embase, Cochrane Library, and Web of Science from January 2022 to March 2023 related to the COVID-19 pandemic home confinement and myopia progression among Chinese schoolchildren. Myopia progression was evaluated by the mean change of spherical equivalent refraction (SER) and axial length (AL) before and during the COVID-19 pandemic. Sex and regional differences in myopia progression among schoolchildren before and during the COVID-19 pandemic were also analyzed. RESULTS: A total of eight eligible studies were included in this study. There was a significant difference in SER before and during home confinement during the COVID-19 pandemic (OR = 0.34; 95%CI = [0.23, 0.44]; Z = 6.39; P < 0.00001), but no significant difference in AL (OR = 0.16; 95%CI = [- 0.09, 0.41]; Z = 1.22, P = 0.22). There was a significant difference in SER between male and female groups during the COVID-19 home confinement (OR = 0.10; 95%CI = [0.00, 0.19]; Z = 1.98, P = 0.05). As for regional analysis, there was a significant difference in SER between urban and rural areas during the COVID-19 quarantine period (OR = -0.56; 95%CI = [- 0.88, - 0.25]; Z = 3.50, P = 0.0005). CONCLUSIONS: Compared with the time before the COVID-19 home confinement, a higher rate of myopic progression among Chinese schoolchildren during the period of the COVID-19 pandemic was demonstrated.


Asunto(s)
COVID-19 , Miopía , Niño , Femenino , Humanos , Masculino , Pueblos del Este de Asia , Miopía/epidemiología , Pandemias , Refracción Ocular
16.
Neural Netw ; 165: 358-369, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37329780

RESUMEN

Image steganography is a long-standing image security problem that aims at hiding information in cover images. In recent years, the application of deep learning to steganography has the tendency to outperform traditional methods. However, the vigorous development of CNN-based steganalyzers still have a serious threat to steganography methods. To address this gap, we present an end-to-end adversarial steganography framework based on CNN and Transformer learned by shifted window local loss, called StegoFormer, which contains Encoder, Decoder, and Discriminator. Encoder is a hybrid model based on U-shaped network and Transformer block, which effectively integrates high-resolution spatial features and global self-attention features. In particular, Shuffle Linear layer is suggested, which can enhance the linear layer's competence to extract local features. Given the substantial error in the central patch of the stego image, we propose shifted window local loss learning to assist Encoder in generating accurate stego images via weighted local loss. Furthermore, Gaussian mask augmentation method is designed to augment data for Discriminator, which helps to improve the security of Encoder through adversarial training. Controlled experiments show that StegoFormer is superior to the existing advanced steganography methods in terms of anti-steganalysis ability, steganography effectiveness, and information restoration.


Asunto(s)
Redes Neurales de la Computación , Distribución Normal
17.
J Neuroinflammation ; 20(1): 127, 2023 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-37245027

RESUMEN

BACKGROUND: Severe lung infection can lead to brain dysfunction and neurobehavioral disorders. The mechanisms that regulate the lung-brain axis of inflammatory response to respiratory infection are incompletely understood. This study examined the effects of lung infection causing systemic and neuroinflammation as a potential mechanism contributing to blood-brain barrier (BBB) leakage and behavioral impairment. METHODS: Lung infection in mice was induced by instilling Pseudomonas aeruginosa (PA) intratracheally. We determined bacterial colonization in tissue, microvascular leakage, expression of cytokines and leukocyte infiltration into the brain. RESULTS: Lung infection caused alveolar-capillary barrier injury as indicated by leakage of plasma proteins across pulmonary microvessels and histopathological characteristics of pulmonary edema (alveolar wall thickening, microvessel congestion, and neutrophil infiltration). PA also caused significant BBB dysfunction characterized by leakage of different sized molecules across cerebral microvessels and a decreased expression of cell-cell junctions (VE-cadherin, claudin-5) in the brain. BBB leakage peaked at 24 h and lasted for 7 days post-inoculation. Additionally, mice with lung infection displayed hyperlocomotion and anxiety-like behaviors. To test whether cerebral dysfunction was caused by PA directly or indirectly, we measured bacterial load in multiple organs. While PA loads were detected in the lungs up to 7 days post-inoculation, bacteria were not detected in the brain as evidenced by negative cerebral spinal fluid (CSF) cultures and lack of distribution in different brain regions or isolated cerebral microvessels. However, mice with PA lung infection demonstrated increased mRNA expression in the brain of pro-inflammatory cytokines (IL-1ß, IL-6, and TNF-α), chemokines (CXCL-1, CXCL-2) and adhesion molecules (VCAM-1 and ICAM-1) along with CD11b + CD45+ cell recruitment, corresponding to their increased blood levels of white cells (polymorphonuclear cells) and cytokines. To confirm the direct effect of cytokines on endothelial permeability, we measured cell-cell adhesive barrier resistance and junction morphology in mouse brain microvascular endothelial cell monolayers, where administration of IL-1ß induced a significant reduction of barrier function coupled with tight junction (TJ) and adherens junction (AJ) diffusion and disorganization. Combined treatment with IL-1ß and TNFα augmented the barrier injury. CONCLUSIONS: Lung bacterial infection is associated with BBB disruption and behavioral changes, which are mediated by systemic cytokine release.


Asunto(s)
Barrera Hematoencefálica , Pseudomonas aeruginosa , Ratones , Animales , Barrera Hematoencefálica/metabolismo , Pseudomonas aeruginosa/metabolismo , Enfermedades Neuroinflamatorias , Citocinas/metabolismo , Pulmón , Factor de Necrosis Tumoral alfa/metabolismo
18.
Sci Rep ; 13(1): 8439, 2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-37231009

RESUMEN

To describe the epidemiology, clinical and social characteristics, management, and outcomes of patients with secondary glaucoma in Central China, a total of 1,129 cases (1,158 eyes) among 710 males (62.89%) and 419 females (37.11%) were analyzed. The mean age was 53.75 ± 17.11 years. The New Rural Cooperative Medical System (NCMS) played the most important role in reimbursement (60.32%) for secondary glaucoma-related medical expenses. The predominant occupation was "farmer" (53.41%). Neovascularization and trauma were the leading causes of secondary glaucoma. Cases of trauma-induced glaucoma decreased substantially during the coronavirus disease 2019 (COVID-19) pandemic. An education level of senior high school or above was uncommon. Ahmed glaucoma valve implantation was the most commonly performed surgery. At the final follow-up, the overall intraocular pressure (IOP) in patients with vascular disease- and trauma-related secondary glaucoma was 19.53 ± 10.20 mmHg, 20.26 ± 11.75 mmHg, and 16.90 ± 6.72 mmHg, while the mean visual acuity (VA) was 0.33 ± 0.32, 0.34 ± 0.36, and 0.43 ± 0.36. In 814 (70.29%) eyes, the VA was < 0.01. Effective preventive measures for at-risk populations, increased NCMS coverage and the promotion of higher education are necessary. These findings will help ophthalmologists detect secondary glaucoma early and manage it in a timely manner.


Asunto(s)
COVID-19 , Implantes de Drenaje de Glaucoma , Glaucoma , Masculino , Femenino , Humanos , Adulto , Persona de Mediana Edad , Anciano , Resultado del Tratamiento , Implantación de Prótesis , COVID-19/epidemiología , Glaucoma/epidemiología , Glaucoma/cirugía , Presión Intraocular , Estudios Retrospectivos , Estudios de Seguimiento
19.
Sensors (Basel) ; 23(9)2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37177511

RESUMEN

With the rapid development of cloud storage and cloud computing technology, users tend to store data in the cloud for more convenient services. In order to ensure the integrity of cloud data, scholars have proposed cloud data integrity verification schemes to protect users' data security. The storage environment of the Internet of Things, in terms of big data and medical big data, demonstrates a stronger demand for data integrity verification schemes, but at the same time, the comprehensive function of data integrity verification schemes is required to be higher. Existing data integrity verification schemes are mostly applied in the cloud storage environment but cannot successfully be applied to the environment of the Internet of Things in the context of big data storage and medical big data storage. To solve this problem when combined with the characteristics and requirements of Internet of Things data storage and medical data storage, we designed an SM2-based offline/online efficient data integrity verification scheme. The resulting scheme uses the SM4 block cryptography algorithm to protect the privacy of the data content and uses a dynamic hash table to realize the dynamic updating of data. Based on the SM2 signature algorithm, the scheme can also realize offline tag generation and batch audits, reducing the computational burden of users. In security proof and efficiency analysis, the scheme has proven to be safe and efficient and can be used in a variety of application scenarios.

20.
bioRxiv ; 2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36747856

RESUMEN

Background: Severe lung infection can lead to brain dysfunction and neurobehavioral disorders. The mechanisms that regulate the lung-brain axis of inflammatory response to respiratory infection are incompletely understood. This study examined the effects of lung infection causing systemic and neuroinflammation as a potential mechanism contributing to blood-brain barrier (BBB) leakage and behavioral impairment. Methods: Pneumonia was induced in adult C57BL/6 mice by intratracheal inoculation of Pseudomonas aeruginosa (PA). Solute extravasation, histology, immunofluorescence, RT-PCR, multiphoton imaging and neurological testing were performed in this study. Results: Lung infection caused alveolar-capillary barrier injury as indicated by leakage of plasma proteins across pulmonary microvessels and histopathological characteristics of pulmonary edema (alveolar wall thickening, microvessel congestion, and neutrophil infiltration). PA also caused significant BBB dysfunction characterized by leakage of different sized molecules across cerebral microvessels and a decreased expression of cell-cell junctions (VE-cadherin, claudin-5) in the brain. BBB leakage peaked at 24 hours and lasted for 7 days post-inoculation. Additionally, mice with lung infection displayed hyperlocomotion and anxiety-like behaviors. To test whether cerebral dysfunction was caused by PA directly or indirectly, we measured bacterial load in multiple organs. While PA loads were detected in the lungs up to 7 days post-inoculation, bacteria were not detected in the brain as evidenced by negative cerebral spinal fluid (CSF) cultures and lack of distribution in different brain regions or isolated cerebral microvessels. However, mice with PA lung infection demonstrated increased mRNA expression in the brain of pro-inflammatory cytokines (IL-1ß, IL-6, and TNF-α), chemokines (CXCL-1, CXCL-2) and adhesion molecules (VCAM-1 and ICAM-1) along with CD11b+ cell recruitment, corresponding to their increased blood levels of white cells (polymorphonuclear cells) and cytokines. To confirm the direct effect of cytokines on endothelial permeability, we measured cell-cell adhesive barrier resistance and junction morphology in mouse brain microvascular endothelial cell monolayers, where administration of IL-1ß induced a significant reduction of barrier function coupled with tight junction (TJ) diffusion and disorganization. Combined treatment with IL-1ß and TNFα augmented the barrier injury. Conclusions: These results suggest that lung bacterial infection causes cerebral microvascular leakage and neuroinflammation via a mechanism involving cytokine-induced BBB injury.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...