Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.347
Filtrar
1.
J Colloid Interface Sci ; 677(Pt B): 666-674, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39159521

RESUMEN

Here, we designed a ratiometric luminescent nanoprobe based on lanthanide-doped upconversion nanoparticles-CuMnO2 nanoassemblies for rapid and sensitive detection of reactive oxygen species (ROS) levels in living cells and mouse. CuMnO2 nanosheets exhibit a wide absorption range of 300-700 nm, overlapping with the visible-light emission of upconversion nanoparticles (UCNPs), resulting in a significant upconversion luminescence quenching. In an acidic environment, H2O2 can promote the redox reaction of CuMnO2, leading to its dissociation from the surface of UCNPs and the restoration of upconversion luminescence. The variation in luminescence intensity ratio (UCL475/UCL450) were monitored to detect ROS levels. The H2O2 nanoprobe exhibited a linear response in the range of 0.314-10 µM with a detection limit of 11.3 nM. The biological tests proved the excellent biocompatibility and low toxicity of obtained UCNPs-CuMnO2 nanoassemblies. This ratiometric luminescent nanoprobe was successfully applied for the detection of exogenous and endogenous ROS in live cells as well as in vivo ROS quantitation. The dual transition metal ions endow this probe efficient catalytic decomposition capabilities, and this sensing strategy broadens the application of UCNPs-based nanomaterials in the field of biological analysis and diagnosis.


Asunto(s)
Nanopartículas , Especies Reactivas de Oxígeno , Especies Reactivas de Oxígeno/metabolismo , Especies Reactivas de Oxígeno/análisis , Nanopartículas/química , Animales , Ratones , Humanos , Rayos Infrarrojos , Imagen Óptica , Tamaño de la Partícula , Propiedades de Superficie , Elementos de la Serie de los Lantanoides/química , Peróxido de Hidrógeno/análisis
2.
Nanomaterials (Basel) ; 14(19)2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39404318

RESUMEN

Femtosecond-laser-fabricated black silicon has been widely used in the fields of solar cells, photodetectors, semiconductor devices, optical coatings, and quantum computing. However, the responsive spectral range limits its application in the near- to mid-infrared wavelengths. To further increase the optical responsivity in longer wavelengths, in this work, silicon (Si) was co-hyperdoped with nitrogen (N) and selenium (Se) through the deposition of Se films on Si followed by femtosecond (fs)-laser irradiation in an atmosphere of NF3. The optical and crystalline properties of the Si:N/Se were found to be influenced by the precursor Se film and laser fluence. The resulting photodetector, a product of this innovative approach, exhibited an impressive responsivity of 24.8 A/W at 840 nm and 19.8 A/W at 1060 nm, surpassing photodetectors made from Si:N, Si:S, and Si:S/Se (the latter two fabricated in SF6). These findings underscore the co-hyperdoping method's potential in significantly improving optoelectronic device performance.

3.
Fitoterapia ; : 106257, 2024 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-39406264

RESUMEN

Five new steroidal saponins, xuefengshanosides A-E; one new stilbene trimer, xuefengshansin; and 16 known compounds were isolated from the rhizomes of Paris xuefengshanensis (Melanthiaceae). The chemical structures of the compounds were elucidated by MS and NMR data analyses, ECD calculations, and acidic hydrolysis experiments. The cytotoxicity and antimicrobial activities of the selected compounds were evaluated. Ophiopogonin C', paris saponin I, paris saponin H, and paris saponin VII showed the most inhibitory activity against five human cancer cell lines and one normal cell line. Xuefengshansin showed weak cytotoxic and antibacterial activities. Paris saponin I was the most active compound against the five tested fungal strains. This species contains structurally diverse compounds that exhibit significant anticancer and antimicrobial activities, suggesting its potential for future development and utilization.

4.
Adv Mater ; : e2410927, 2024 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-39400412

RESUMEN

Polymer dielectrics with combined thermal stability and self-healing properties are specifically desired for high-temperature film capacitors. The high thermal stability of conventional polymers benefits from the abundance of aromatic rings in the molecule backbone, but the high carbon content sacrifices their self-healing properties. Here, analicyclic polyimide with a high glass transition temperature (256 °C) and wide energy bandgap (4.58 eV) is designed, which exhibits electric conductivity more than an order of magnitude lower than that of classical polyimide at high electric fields and high temperatures. As a result, alicyclic polyimide achieves a discharged energy density of 4.54 J cm-3 and a charge-discharge efficiency of above 90% at 200 °C, which is superior to existing dielectric polymers and composites. The alicyclic polyimide benefits from a low pyrolytic residual carbon rate, retaining 93% of the dielectric breakdown strength after four electrical breakdown cycles. Distinguishing from the current condensed-phase self-healing concept, for the first time, exploring the self-healing capability of high-temperature polyimide dielectric is presented based on dual self-healing mechanisms of gas-phase and condensed-phase. The high energy density at high temperatures and the superior self-healing capability of alicyclic polyimide further indicate the promise of polyimide dielectric film capacitors for extreme conditions.

6.
Nanomicro Lett ; 17(1): 29, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39347862

RESUMEN

Depleting fossil energy sources and conventional polluting power generation pose a threat to sustainable development. Hydroelectricity generation from ubiquitous and spontaneous phase transitions between liquid and gaseous water has been considered a promising strategy for mitigating the energy crisis. Fibrous materials with unique flexibility, processability, multifunctionality, and practicability have been widely applied for fibrous materials-based hydroelectricity generation (FHG). In this review, the power generation mechanisms, design principles, and electricity enhancement factors of FHG are first introduced. Then, the fabrication strategies and characteristics of varied constructions including 1D fiber, 1D yarn, 2D fabric, 2D membrane, 3D fibrous framework, and 3D fibrous gel are demonstrated. Afterward, the advanced functions of FHG during water harvesting, proton dissociation, ion separation, and charge accumulation processes are analyzed in detail. Moreover, the potential applications including power supply, energy storage, electrical sensor, and information expression are also discussed. Finally, some existing challenges are considered and prospects for future development are sincerely proposed.

7.
Polymers (Basel) ; 16(18)2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39339071

RESUMEN

Ethylene-propylene-diene monomer (EPDM) is a key engineering material; its mechanical characterization is important for the safe use of the material. In this paper, the coupled effects of thermal degradation temperature and time on the tensile mechanical behavior of EPDM rubber were investigated. The tensile stress-strain curves of the aged and unaged EPDM rubber show strong nonlinearity, demonstrating especially rapid stiffening as the strain increases under small deformation. The popular Mooney-Rivlin and Ogden (N = 3) models were chosen to fit the test data, and the results indicate that neither of the classical models can accurately describe the tensile mechanical behavior of this rubber. Six hyperelastic constitutive models, which are excellent for rubber with highly nonlinearity, were employed, and their abilities to reproduce the stress-strain curve of the unaged EPDM were assessed. Finally, the Davis-De-Thomas model was found to be an appropriate hyperelastic model for EPDM rubber. A Dakin-type kinetic relationship was employed to describe the relationships between the model parameters and aging temperature and time, and, combined with the Arrhenius law, a thermal aging constitutive model for EPDM rubber was established. The ability of the proposed model was checked by independent testing data. In the moderate strain range of 200%, the errors remained below 10%. The maximum errors of the prediction results at 85 °C for 4 days and 100 °C for 2 and 4 days were computed to be 17.06%, 17.51% and 19.77%, respectively. This work develops a theoretical approach to predicting the mechanical behavior of rubber material that has suffered thermal aging; this approach is helpful in determining the safe long-term use of the material.

8.
Sci Total Environ ; 953: 175980, 2024 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-39236823

RESUMEN

Assessing the bioaccessibility and bioavailability of cadmium (Cd) is crucial for effective evaluation of the exposure risk associated with intake of Cd-contaminated rice. However, limited studies have investigated the influence of gut microbiota on these two significant factors. In this study, we utilized in vitro gastrointestinal simulators, specifically the RIVM-M (with human gut microbial communities) and the RIVM model (without gut microbial communities), to determine the bioaccessibility of Cd in rice. Additionally, we employed the Caco-2 cell model to assess bioavailability. Our findings provide compelling evidence that gut microbiota significantly reduces Cd bioaccessibility and bioavailability (p<0.05). Notably, strong in vivo-in vitro correlations (IVIVC) were observed between the in vitro bioaccessibilities and bioavailabilities, as compared to the results obtained from an in vivo mouse bioassay (R2 = 0.63-0.65 and 0.45-0.70, respectively). Minerals such as copper (Cu) and iron (Fe) in the food matrix were found to be negatively correlated with Cd bioaccessibility in rice. Furthermore, the results obtained from the toxicokinetic (TK) model revealed that the predicted urinary Cd levels in the Chinese population, based on dietary Cd intake adjusted by in vitro bioaccessibility from the RIVM-M model, were consistent with the actual measured levels (p > 0.05). These results indicated that the RIVM-M model represents a potent approach for measuring Cd bioaccessibility and underscore the crucial role of gut microbiota in the digestion and absorption process of Cd. The implementation of these in vitro methods holds promise for reducing uncertainties in dietary exposure assessment.


Asunto(s)
Disponibilidad Biológica , Cadmio , Microbioma Gastrointestinal , Oryza , Oryza/metabolismo , Cadmio/metabolismo , Humanos , Animales , Ratones , Células CACO-2 , Contaminación de Alimentos/análisis , Contaminantes del Suelo/metabolismo , Contaminantes del Suelo/análisis
9.
ACS Nano ; 18(40): 27718-27726, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39312392

RESUMEN

Urea electrosynthesis by coelectrolysis of NO3- and CO2 (UENC) holds enormous promise for sustainable urea production, while the efficient UENC process relies on the rational design of high-performance catalysts to facilitate the electrocatalytic C-N coupling efficiency and the hydrogenation reaction process. Herein, Fe single atoms supported on MoS2 (Fe1/MoS2) are developed as a highly effective and robust catalyst for UENC. Theoretical calculations and operando spectroscopic measurements reveal a tandem catalysis mechanism of the Fe1-S3 motif and MoS2-edge to jointly promote the UENC process, where the Fe1-S3 motif drives the early C-N coupling and subsequent *CO2NO2-to-*CO2NH2 step. The generated *CO2NH2 is then migrated from the Fe1-S3 motif to the nearby MoS2-edge, which facilitates the *CO2NH2 → *COOHNH2 step for urea formation. Noticeably, Fe1/MoS2 assembled in a flow cell reaches a maximum urea Faraday efficiency of 54.98% with a corresponding urea yield rate of 18.98 mmol h-1 g-1, performing at the top level among all of the UENC catalysts reported to date.

10.
Sci Rep ; 14(1): 20879, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39242594

RESUMEN

Underground cavities have complex spatial structures and geological settings, their arrangement is dense and crisscrossed. The construction system involves multiple work surfaces, levels, and processes. The close integration of construction simulation with actual production conditions is crucial for enhancing the guidance that simulation results provide for practical engineering. Therefore, from the perspective of optimizing construction organization and management, this article comprehensively considers various factors in the construction process, innovatively introduces the principle of production line balance and the concept of rule cycle, and combines technology and management, an underground cavities construction simulation system (UCCSS) is developed. In UCCSS, a hierarchical model is built and calculation are performed on models with different construction methods by modifying the parameters as per the actual engineering characteristics. The simulation results are comprehensively analysed to determine the optimal construction programme. An application case is proposed based on the construction organisation design of the long and parallel diversion tunnels at the CB Hydropower Station. The results show that the system has good practicality and credibility and can provide guidance for the construction organisation design of underground cavities with various features.

11.
Radiol Case Rep ; 19(11): 5365-5369, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39280743

RESUMEN

Pseudolipoma of Glisson's capsule is a rare, benign subcapsular liver lesion that typically occurs in older adult men. It comprises degenerated fat tissue that likely originates from detached mesothelial appendages or degenerated liver lipomas. We report the case of a 58-year-old female patient with a gastric malignant tumor after admission. No lesions were found in the liver capsule before surgery. During postoperative reviews from 2015 to 2018, new dense, fatty lesions were found under the liver capsule, and highly unusually, the lesions moved under the liver capsule over time. To the best of our knowledge, only 1 other case has been reported of a pseudolipoma of Glisson's capsule that migrated over time. This supports the hypothesis that migrating mesothelial attachments form Glisson capsule pseudolipomas. This case report aims to review liver capsule anatomy, explain why the liver is particularly susceptible to this phenomenon, and present information to aid the diagnosis of fat-containing hepatic lesions by providing a unique perspective on certain pathologies affecting the liver.

12.
Org Lett ; 26(39): 8323-8328, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39311499

RESUMEN

S-Alkyl dithiocarbamates, as an important class of sulfur-containing compounds, play pivotal roles in diverse fields, yet methods for the synthesis that start from simple, readily available feedstocks and exhibit mild conditions and structurally diverse products are scarce. In this work, we developed an efficient approach for the synthesis of various S-alkyl dithiocarbamates via visible-light photocatalysis with readily available and structurally diverse alkyl carboxylic acids (primary, secondary, and tertiary acids, amino acids, etc.) and disulfide tetraalkylthiuram as the starting materials. This protocol features high efficiency, mild reaction conditions, a broad substrate scope, and good functional group tolerance. Potential applications are further demonstrated by a sunlight experiment, H2O as a solvent, gram-scale synthesis, and facile synthesis of bioactive molecules.

13.
J Comput Chem ; 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39240057

RESUMEN

Sulfonyl fluorides hold significant importance as highly valued intermediates in chemical biology due to their optimal balance of biocompatibility with both aqueous stability and protein reactivity. The Cornella group introduced a one-pot strategy for synthesizing aryl sulfonyl fluorides via Bi(III) redox-neutral catalysis, which facilitates the transmetallation and direct insertion of SO2 into the BiC(sp2) bond giving the aryl sulfonyl fluorides. We report herein a comprehensive computational investigation of the redox-neutral Bi(III) catalytic mechanism, disclose the critical role of the Bi(III) catalyst and base (i.e., K3PO4), and uncover the origin of SO2 insertion into the Bi(III)C(sp2) bond. The entire catalysis can be characterized via three stages: (i) transmetallation generating the Bi(III)-phenyl intermediate IM3 facilitated by K3PO4. (ii) SO2 insertion into IM3 leading to the formation of Bi(III)-OSOAr intermediate IM5. (iii) IM5 undergoes S(IV)-oxidation yielding the aryl sulfonyl fluoride product 4 and liberating the Bi(III) catalyst for the next catalytic cycle. Each stage is kinetically and thermodynamically feasible. Moreover, we explored other some small molecules (NO2, CO2, H2O, N2O, etc.) insertion reactions mediated by the Bi(III)-complex, and found that NO2 insertions could be easily achieved due to the low insertion barriers (i.e., 17.5 kcal/mol). Based on the detailed mechanistic study, we further rationally designed additional Bi(III) and Sb(III) catalysts, and found that some of which exhibit promising potential for experimental realization due to their low barriers (<16.4 kcal/mol). In this regard, our study contributes significantly to enhancing current Bi(III)-catalytic systems and paving the way for novel Bi(III)-catalyzed aryl sulfonyl fluoride formation reactions.

14.
Heliyon ; 10(16): e35618, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39247291

RESUMEN

Neonicotinoid insecticides (NEOs) are a widely used type of insecticide found globally, leading to broad human exposure. However, there is limited research on how internal exposure levels of NEOs and their metabolites impact in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) outcomes. A study was conducted at the Sixth Affiliated Hospital of Sun Yat-sen University between 2017 and 2020 involving 436 women undergoing IVF/ICSI treatment. Data on demographics and clinical history were collected from medical records. The concentrations of 11 NEOs and 4 NEO metabolites in follicular fluid and serum were measured using a salting-out assisted liquid-liquid extraction method and liquid chromatography-tandem mass spectrometry. Our findings indicated that NEOs were prevalent in women with infertility. One NEO metabolite, N-dm-ACE, was detected in all samples with median concentrations of 0.221 ng/mL in follicular fluid and 0.228 ng/mL in serum. The study showed a decrease in the number of retrieved oocytes, mature oocytes, 2 PN zygotes, and high-quality embryos as the number of exposed NEOs in follicular fluid increased. Women in the highest tertile of N-dm-ACE exposure had fewer mature oocytes, 2 PN zygotes, and lower oocyte maturity rates compared to those in the lowest tertile. The findings suggest that exposure to NEOs may negatively impact reproductive outcomes in IVF/ICSI pregnancies, particularly affecting oocyte retrieval and embryo quality. This study highlights the potential adverse effects of environmental NEO exposure on IVF/ICSI outcomes, emphasizing the importance of considering such exposures in preconception care.

15.
Colloids Surf B Biointerfaces ; 245: 114219, 2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39293290

RESUMEN

Osseointegration is significantly impeded in osteoporotic conditions due to the elevated levels of reactive oxygen species (ROS) and inflammation at the site of injury. To enhance bone regeneration in osteoporotic conditions, a modified polyether ether ketone (PEEK) implants was prepared, denoted as PEEK-PDA-Sr. The implants consisted of mussel adhesion layer with the conjugation of strontium (Sr) ions, which can constantly release Sr ions for up to 3 weeks. PEEK-PDA-Sr demonstrated excellent biocompatibility and effectively regulated intracellular ROS levels and macrophage differentiation. In addition, the PEEK-PDA-Sr facilitated the osteogenesis of bone marrow stromal cells (BMSCs). In the ovariectomized (OVX) rat model of osteoporosis, the PEEK-PDA-Sr exhibited raised osseointegration in the femoral bone defects. The PEEK-PDA-Sr can be used as an immunoregulator with enhanced osseointegration and osteogenesis both in vivo and in vitro, which provides an available approach to treat osteoporotic bone defects.

17.
Materials (Basel) ; 17(17)2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39274808

RESUMEN

Water scarcity is a serious threat to the survival and development of mankind. Interfacial solar steam generation (ISSG) can alleviate the global freshwater shortage by converting sustainable solar power into thermal energy for desalination. ISSG possesses many advantages such as high photothermal efficiency, robust durability, and environmental friendliness. However, conventional evaporators suffered from huge heat losses in the evaporation process due to the lack of efficient thermal management. Herein, hydrophilic Tencel yarn is applied to fabricate a three-dimensional double-layer fabric evaporator (DLE) with efficient multi-stage thermal management. DLE enables multiple solar absorptions, promotes cold evaporation, and optimizes thermal management. The airflow was utilized after structure engineering for enhanced energy evaporation efficiency. The evaporation rate can reach 2.86 kg·m-2·h-1 under 1 sun (1 kW·m-2), and 6.26 kg·m-2·h-1 at a wind speed of 3 m·s-1. After a long duration of outdoor operation, the average daily evaporation rate remains stable at over 8.9 kg·m-2, and the removal rate of metal ions in seawater reaches 99%. Overall, DLE with efficient and durable three-dimensional multi-stage thermal management exhibits excellent practicality for solar desalination.

18.
Heliyon ; 10(18): e37707, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39323815

RESUMEN

Background: All-suture anchor (ASA) is a special type of suture anchor. It has been used to repair rotator cuff tears (RCTs). However, mechanical properties and tendon-bone integration at different time postoperatively remains to be unclear. Methods: Mechanical testing and water contact angle measurements were conducted for ASA. In vitro biocompatibility was assessed using rat bone marrow stem cells (BMSCs), including live/dead cell staining and Cell Counting Kit-8 assays. ASA was implanted for rotator cuff repair (ASA group) in a New Zealand White rabbit model of RCTs, and a natural rotator cuff was used as a control (natural group). The animals were sacrificed, and tissue samples were harvested for biomechanical, radiographic, and histological analysis at 4, 8, and 12 weeks postoperatively. Results: ASA was hydrophobic and had a strong mechanical property in vitro. The biocompatibility analysis showed that ASA had no effect on the viability of BMSCs. Mechanical testing in vivo revealed that a gradually improved failure load of ASA group was 118.0 ± 22.53N at 12 weeks postoperatively, which was recovered to the natural group. Micro-CT analysis indicated that an initial decrease in BMD and trabecular quality following ASA implantation, with a slight recovery observed at 12 weeks. Additionally, histological analysis showed the tendon-bone interface gradually integrated in the ASA group. A significant increase in tendon-bone interface scores was found from 4 weeks to 12 weeks. Tendon maturing score also improved in the ASA group, and Type I collagen content recovered to 18.58 ± 4.378 % at 12 weeks and no different from that of the natural group. Conclusion: Rotator cuff repair with ASA in a rabbit model demonstrated the capacity to enhance biomechanical properties and tendon-bone integration.

19.
Angew Chem Int Ed Engl ; : e202414696, 2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39305142

RESUMEN

The facile reaction of the SiPh2-bridged bis-silylene (LSi:)2SiPh2 (L = PhC(NBut)2) with diphenylacetylene affords the unprecedented 1,2,3-trisilacyclopentadiene (LSi)2(PhC)2SiPh2 1 with a hypercoordinate λ4Si-λ3Si double bond. Compound 1 is very oxophilic and consumes three molar equivalents of inert N2O to form the bicyclic oxygenation product 2 through O-atom insertion in the Si=Si and Si-Si bonds. Strikingly, 1 can completely split the C≡O bonds of carbon monoxide under ambient conditions (1 atm, room temperature), yielding the 1,3-disilacyclopentadiene3, representing the first hypercoordinate example of a cyclosilene with a λ4Si-λ3C double bond. Likewise, reaction of Xyl-NC (Xyl = 2,6-dimethylphenyl), an isocyanide isoelectronic with CO, with1furnishes the related 1,3-disilacyclopentadiene4but with an amidinato silylene pendent attached to the Si=C carbon ring atom.

20.
Environ Sci Ecotechnol ; 22: 100479, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39286480

RESUMEN

Environmental assessments are critical for ensuring the sustainable development of human civilization. The integration of artificial intelligence (AI) in these assessments has shown great promise, yet the "black box" nature of AI models often undermines trust due to the lack of transparency in their decision-making processes, even when these models demonstrate high accuracy. To address this challenge, we evaluated the performance of a transformer model against other AI approaches, utilizing extensive multivariate and spatiotemporal environmental datasets encompassing both natural and anthropogenic indicators. We further explored the application of saliency maps as a novel explainability tool in multi-source AI-driven environmental assessments, enabling the identification of individual indicators' contributions to the model's predictions. We find that the transformer model outperforms others, achieving an accuracy of about 98% and an area under the receiver operating characteristic curve (AUC) of 0.891. Regionally, the environmental assessment values are predominantly classified as level II or III in the central and southwestern study areas, level IV in the northern region, and level V in the western region. Through explainability analysis, we identify that water hardness, total dissolved solids, and arsenic concentrations are the most influential indicators in the model. Our AI-driven environmental assessment model is accurate and explainable, offering actionable insights for targeted environmental management. Furthermore, this study advances the application of AI in environmental science by presenting a robust, explainable model that bridges the gap between machine learning and environmental governance, enhancing both understanding and trust in AI-assisted environmental assessments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...