RESUMEN
Previous studies have shown that major depressive disorder (MDD) patients exhibit structural and functional impairments, but few studies have investigated changes in higher-order coupling between structure and function. Here, we systematically investigated the effect of MDD on higher-order coupling between structural connectivity (SC) and functional connectivity (FC). Each brain region was mapped into embedding vector by the node2vec algorithm. We used support vector machine (SVM) with the brain region embedding vector to distinguish MDD patients from health controls (HCs) and identify the most discriminative brain regions. Our study revealed that MDD patients had decreased higher-order coupling in connections between the most discriminative brain regions and local connections in rich-club organization and increased higher-order coupling in connections between the ventral attentional network and limbic network compared with HCs. Interestingly, transcriptome-neuroimaging association analysis demonstrated the correlations between regional rSC-FC coupling variations between MDD patients and HCs and α/ß-hydrolase domain-containing 6 (ABHD6), ß 1,3-N-acetylglucosaminyltransferase-9(ß3GNT9), transmembrane protein 45B (TMEM45B), the correlation between regional dSC-FC coupling variations and retinoic acid early transcript 1E antisense RNA 1(RAET1E-AS1), and the correlations between regional iSC-FC coupling variations and ABHD6, ß3GNT9, katanin-like 2 protein (KATNAL2). In addition, correlation analysis with neurotransmitter receptor/transporter maps found that the rSC-FC and iSC-FC coupling variations were both correlated with neuroendocrine transporter (NET) expression, and the dSC-FC coupling variations were correlated with metabotropic glutamate receptor 5 (mGluR5). Further mediation analysis explored the relationship between genes, neurotransmitter receptor/transporter and MDD related higher-order coupling variations. These findings indicate that specific genetic and molecular factors underpin the observed disparities in higher-order SC-FC coupling between MDD patients and HCs. Our study confirmed that higher-order coupling between SC and FC plays an important role in diagnosing MDD. The identification of new biological evidence for MDD etiology holds promise for the development of innovative antidepressant therapies.
Asunto(s)
Encéfalo , Trastorno Depresivo Mayor , Humanos , Trastorno Depresivo Mayor/genética , Trastorno Depresivo Mayor/fisiopatología , Trastorno Depresivo Mayor/metabolismo , Trastorno Depresivo Mayor/diagnóstico por imagen , Masculino , Adulto , Femenino , Encéfalo/metabolismo , Encéfalo/fisiopatología , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética , Persona de Mediana Edad , Conectoma/métodos , Red Nerviosa/fisiopatología , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/metabolismo , Máquina de Vectores de Soporte , TranscriptomaRESUMEN
Social recommendation aims to improve the performance of recommendation systems with additional social network information. In the state of art, there are two major problems in applying graph neural networks (GNNs) to social recommendation: (i) Social network is connected through social relationships, not item preferences, i.e., there may be connected users with completely different preferences, and (ii) the user representation of current graph neural network layer of social network and user-item interaction network is the output of the mixed user representation of the previous layer, which causes information redundancy. To address the above problems, we propose graph neural networks for preference social recommendation. First, a friend influence indicator is proposed to transform social networks into a new view for describing the similarity of friend preferences. We name the new view the Social Preference Network. Next, we use different GNNs to capture the respective information of the social preference network and the user-item interaction network, which effectively avoids information redundancy. Finally, we use two losses to penalize the unobserved user-item interaction and the unit space vector angle, respectively, to preserve the original connection relationship and widen the distance between positive and negative samples. Experiment results show that the proposed PSR is effective and lightweight for recommendation tasks, especially in dealing with cold-start problems.
RESUMEN
Lesion detectors based on deep learning can assist doctors in diagnosing diseases. However, the performance of current detectors is likely to be unsatisfactory due to the scarcity of training samples. Therefore, it is beneficial to use image generation to augment the training set of a detector. However, when the imaging texture of the medical image is relatively delicate, the synthesized image generated by an existing method may be too poor in quality to meet the training requirements of the detectors. In this regard, a medical image augmentation method, namely, a texture-constrained multichannel progressive generative adversarial network (TMP-GAN), is proposed in this work. TMP-GAN uses joint training of multiple channels to effectively avoid the typical shortcomings of the current generation methods. It also uses an adversarial learning-based texture discrimination loss to further improve the fidelity of the synthesized images. In addition, TMP-GAN employs a progressive generation mechanism to steadily improve the accuracy of the medical image synthesizer. Experiments on the publicly available dataset CBIS-DDMS and our pancreatic tumor dataset show that the precision/recall/F1-score of the detector trained on the TMP-GAN augmented dataset improves by 2.59%/2.70%/2.77% and 2.44%/2.06%/2.36%, respectively, compared to the optimal results of other data augmentation methods. The FROC curve of the detector is also better than the curve from the contrast-augmented trained dataset. Therefore, we believe the proposed TMP-GAN is a practical technique to efficiently implement lesion detection case studies.
Asunto(s)
Procesamiento de Imagen Asistido por Computador , Procesamiento de Imagen Asistido por Computador/métodosRESUMEN
OBJECT: With the development of deep learning, the number of training samples for medical image-based diagnosis and treatment models is increasing. Generative Adversarial Networks (GANs) have attracted attention in medical image processing due to their excellent image generation capabilities and have been widely used in data augmentation. In this paper, a comprehensive and systematic review and analysis of medical image augmentation work are carried out, and its research status and development prospects are reviewed. METHOD: This paper reviews 105 medical image augmentation related papers, which mainly collected by ELSEVIER, IEEE Xplore, and Springer from 2018 to 2021. We counted these papers according to the parts of the organs corresponding to the images, and sorted out the medical image datasets that appeared in them, the loss function in model training, and the quantitative evaluation metrics of image augmentation. At the same time, we briefly introduce the literature collected in three journals and three conferences that have received attention in medical image processing. RESULT: First, we summarize the advantages of various augmentation models, loss functions, and evaluation metrics. Researchers can use this information as a reference when designing augmentation tasks. Second, we explore the relationship between augmented models and the amount of the training set, and tease out the role that augmented models may play when the quality of the training set is limited. Third, the statistical number of papers shows that the development momentum of this research field remains strong. Furthermore, we discuss the existing limitations of this type of model and suggest possible research directions. CONCLUSION: We discuss GAN-based medical image augmentation work in detail. This method effectively alleviates the challenge of limited training samples for medical image diagnosis and treatment models. It is hoped that this review will benefit researchers interested in this field.