Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Langmuir ; 40(36): 19279-19286, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39207173

RESUMEN

Supramolecular polymers, with their specific functional units and structures, can effectively enhance the absorption and utilization of light energy, thereby facilitating more efficient photocatalytic organic reactions. In the present work, we constructed a supramolecular polymer consisting of benzothiazole derivatives (BTBP) and cucurbit[8]uril (CB[8]). The BTBP monomer, known for its unique chemical structure and properties, has been found to exhibit a remarkable capability in generating singlet oxygen (1O2). As a result of the constraining impact of the macrocyclic molecule, the inclusion of CB[8] resulted in an effective enhancement in the ability to generate 1O2 while forming supramolecular polymer BTBP-CB[8]. When evaluating the quantum yield of 1O2 using Rose Bengal (RB) as a reference photosensitizer (75% in water), BTBP-CB[8] demonstrated an enhanced 1O2 quantum yield compared to BTBP, with an impressive yield of 152.4%, demonstrating that the formation of supramolecular polymer contributes to its ability to generate 1O2. Subsequently, BTBP-CB[8], a highly efficient 1O2 generator, was employed for the photocatalytic Minisci alkylation reaction, resulting in an impressive reaction yield of up to 89%. The supramolecular polymer strategies employed in the construction of photocatalytic systems have exhibited remarkable efficacy in the production of 1O2, underscoring their immense prospects in photocatalysis.

2.
Inorg Chem ; 63(35): 16533-16540, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39167756

RESUMEN

Employing hydrogen-bonded organic frameworks (HOFs) as mild photocatalysts for organic conversions is still considerably challenging. In this work, we synthesized a hydrogen-bonded organic framework (HOF-16) and achieved the photocatalytic oxidation of silanes to generate silanols. Considering the constraints imposed by the framework structure, a significant improvement in the efficacy of singlet oxygen (1O2) generation is observed. HOF-16 exhibits remarkable photocatalytic performance when it comes to silane hydroxylation, displaying high efficiency, low catalyst loading, and good recyclability. This research highlights the immense potential of HOFs in the realm of organic photocatalysis.

3.
J Colloid Interface Sci ; 658: 392-400, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38113548

RESUMEN

Supramolecular organic frameworks (SOFs) mostly require high-energy purple or blue light for photocatalytic reactions, while highly abundant and low-energy light systems have rarely been explored. Therefore, it is necessary to construct 2D SOFs for low-energy light-induced photocatalysis. This study describes the design and synthesis of a water-soluble two-dimensional (2D) supramolecular organic framework (TP-SOF) using the host-guest interaction between a triphenylamine derivative (TP-3Py) and cucurbit[8]uril (CB[8]). The formation of the 2D SOF can be attributed to the synergistic impact resulting from the orientated head-to-tail superposition mode between the vinylpyridine arms of TP-3Py and CB[8], which results in a significant redshift in the UV-vis absorption spectrum, especially displaying a strong absorption band in the green light region. The monomeric TP-3Py can effectively produce singlet oxygen (1O2) and realize the photocatalytic oxidation of thioanisole in the aqueous solution. In comparison to monomeric TP-3Py, the confinement effect of CB[8] results in a notable enhancement in the production efficiency of superoxide anion radicals (O2•-), exhibiting promising prospects in the field of photocatalytic oxidation reaction, which facilitates the application of TP-SOF as a very efficient photosensitizer for the promotion of the oxidative hydroxylation of arylboronic acids under green light in the aqueous solution, giving a high yield of 91%. The present study not only presents a compelling illustration of photocatalysis utilizing a 2D SOF derived from triphenylamine, but also unveils promising avenues for the photocatalytic oxidation of SOF employing low-energy light systems.

4.
ChemSusChem ; 17(8): e202301686, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38135666

RESUMEN

Carbon dots (CDs) are a type of carbon-based luminescent material with a zero-dimensional structure and a size of less than 10 nm, which are composed of sp2/sp3 hybrid carbon nuclei and surface functional groups. Because CDs has strong photoluminescence and good light absorption in the ultraviolet and near visible regions, it is an excellent candidate for photocatalytic applications. However, the use of nonmetallic doped CDs as photosensitizers for direct photocatalytic organic reactions has been limited to several scattered reports. Herein, we present nitrogen-doped carbon dots (N-CDs) that has a capability for not only produce reactive oxygen species (ROS), including superoxide anion radical (O2⋅-) and singlet oxygen (1O2), but also provide an unprecedented high activity of dehalogenative oxyalkylation of styrene with a yield of 93 %. This work develops a novel opportunity to utilize cost-effective and easily accessible CDs for the advancement of photocatalysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...