Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Fitoterapia ; 176: 106005, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38744383

RESUMEN

Mogrol, the aglycone of well-known sweeter mogrosides, shows potent anti-inflammatory activity. In this study, forty-two mogrol derivatives bearing various pharmacophores with oxygen or nitrogen atoms were designed and synthesized via structural modification at C24 site, and their anti-inflammatory activity were screened against lipopolysaccharide (LPS)-induced RAW264.7 cells. Compared with mogrol, most of derivatives exhibited stronger inhibition of NO production without cytotoxicity. In particular, compound B5 that contained an indole motif effectively suppressed the secretion of inflammatory mediators including TNF-α and IL-6, and inhibited the expression levels of TLR4, p-p65 and iNOS proteins. Molecular docking showed that the active B5 interacted with amino acid residues of iNOS protein through π-π stacking and hydrophobic interactions with binding affinity value of -12.1 kcal/mol, which was much stronger than mogrol (-8.9 kcal/mol). These results suggest that derivative B5 is a promising anti-inflammatory molecule and the strategy of hybridizing indole skeleton on mogrol is worthy for further attention.


Asunto(s)
Antiinflamatorios , Simulación del Acoplamiento Molecular , Ratones , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/química , Células RAW 264.7 , Estructura Molecular , Factor de Necrosis Tumoral alfa/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Receptor Toll-Like 4/metabolismo , Interleucina-6/metabolismo , Indoles/farmacología , Indoles/química
2.
Fitoterapia ; 168: 105539, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37178810

RESUMEN

Phytochemical study on the whole plants of a Gentianaceous medicinal plant, Canscora lucidissima, gave one new acylated iridoid glucoside, canscorin A (1), and two new xanthone glycosides (2 and 3) together with 17 known compounds including five xanthones, eight xanthone glycosides, two benzophenone glucosides, caffeic acid, and loganic acid. Canscorin A (1) was assigned as a loganic acid derivative having a hydroxyterephthalic acid moiety by spectroscopic analysis together with chemical evidence, while 2 and 3 were elucidated to be a rutinosylxanthone and a glucosylxanthone, respectively. The absolute configurations of the sugar moieties of 2 and 3 were determined by HPLC analysis. The isolated compounds were evaluated for their inhibitory activities against erastin-induced ferroptosis on human hepatoma Hep3B cells and LPS-stimulated IL-1ß production from murine microglial cells.


Asunto(s)
Ferroptosis , Gentianaceae , Xantonas , Ratones , Humanos , Animales , Glucósidos Iridoides , Estructura Molecular , Glicósidos/farmacología , Glicósidos/química , Xantonas/farmacología
3.
Chem Biodivers ; 20(4): e202300025, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36898972

RESUMEN

Toll-like receptors (TLRs) recognize pathogen-associated molecular patterns and trigger an inflammatory response via the myeloid differential factor 88 (MyD88)-dependent and toll-interleukin-1 receptor domain-containing adapter-inducing interferon-ß (TRIF)-dependent pathways. Lindenane type sesquiterpene dimers (LSDs) are characteristic metabolites of plants belonging to the genus Sarcandra (Chloranthaceae). The aim of this study was to evaluate the potential anti-inflammatory effects of the LSDs shizukaol D (1) and sarcandrolide E (2) on lipopolysaccharides (LPS)-stimulated RAW264.7 macrophages in vitro, and explore the underlying mechanisms. Both LSDs neutralized the LPS-induced morphological changes and production of nitric oxide (NO), as determined by CCK-8 assay and Griess assay, respectively. Furthermore, shizukaol D (1) and sarcandrolide E (2) downregulated interferon ß (IFNß), tumor necrosis factor α (TNFα) and interleukin-1ß (IL-1ß) mRNA levels as measured by reverse transcription polymerase chain reaction (RT-PCR), and inhibited the phosphorylation of nuclear factor kappa B p65 (p65), nuclear factor kappa-Bα (IκBα), Jun N-terminal kinase (JNK), extracellular regulated kinase (ERK), mitogen-activated protein kinase p38 (p38), MyD88, IL-1RI-associated protein kinase 1 (IRAK1), and transforming growth factor-ß-activated kinase 1 (TAK1) proteins in the Western blotting assay. In conclusion, LSDs can alleviate the inflammatory response by inhibiting the TLR/MyD88 signalling pathway.


Asunto(s)
Inflamación , Sesquiterpenos , Receptores Toll-Like , Humanos , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Lipopolisacáridos/farmacología , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Sesquiterpenos/farmacología , Receptores Toll-Like/antagonistas & inhibidores , Receptores Toll-Like/metabolismo
4.
J Asian Nat Prod Res ; 24(11): 1025-1032, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34937451

RESUMEN

Two new glycosides of methyl everninate, rhodomollosides A (1) and B (2), were isolated from the aerial parts of a medicinal plant Rhododendron molle. The structures of 1 and 2 were elucidated on the basis of detailed spectroscopic analyses as well as HPLC analyses for thiazolidine derivatives of their sugar moieties. The sugar moiety of rhodomolloside A (1) was elucidated to be a rare monosaccharide, D-allose, while rhodomolloside B (2) was assigned as a D-glucoside of methyl everninate. Furthermore, they were evaluated for their cytotoxicity against RAW264.7 cells, and for their inhibitory effects with a lipopolysaccharide (LPS)-stimulated murine macrophages RAW 264.7 cells model.


Asunto(s)
Diterpenos , Rhododendron , Ratones , Animales , Rhododendron/química , Glicósidos/farmacología , Diterpenos/química , Estructura Molecular , Azúcares , Componentes Aéreos de las Plantas
5.
Exp Ther Med ; 22(6): 1461, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34737801

RESUMEN

Aberrant destruction of the articular extracellular matrix (ECM) has been considered to be one of the pathological features of osteoarthritis (OA) which results in chondrocyte changes and articular cartilage degeneration. The MAPK signaling pathway serves a key role by releasing cartilage-degrading enzymes from OA chondrocytes. However, the use of MAPK inhibitors for OA is hindered by their potential long-term toxicity. Vicenin 3 is one of the major components of the Jian-Gu injection which is effective in the clinical treatment of OA. However, its potential impact on OA remain poorly understood. Therefore, the present study aimed to assess the effects of vicenin 3 on interleukin (IL)-1ß-treated SW1353 chondrocytes, which mimic the microenvironment of OA. These chondrocytes were pretreated with vicenin 3 (0, 5 and 20 µM) for 1 h and subsequently stimulated with IL-1ß (10 ng/ml) for 24 h. Nitric oxide (NO) production was measured using the Griess reaction, whereas the production of prostaglandin E2 (PGE2), matrix metalloproteinases (MMPs), A disintegrin-like and metalloproteinase with thrombospondin motifs (ADAMTSs), collagen type II and aggrecan were measured using ELISA. The mRNA expression of MMPs and ADAMTSs were measured using reverse transcription-quantitative PCR. The protein expression levels of MAPK were measured using western blotting. Vicenin 3 was found to significantly inhibit IL-1ß-induced production of NO and PGE. Increments in the expression levels of MMP-1, MMP-3, MMP-13, ADAMTS-4 and ADAMTS-5 induced by IL-1ß, in addition to the IL-1ß-induced degradation of collagen type II and aggrecan, were all reversed by vicenin 3 treatment. Furthermore, vicenin 3 suppressed IL-1ß-stimulated MAPK activation, an effect that was similar to that exerted by SB203580, a well-known p38 MAPK inhibitor. In conclusion, vicenin 3 may confer therapeutic potential similar to that of the p38 MAPK inhibitor for the treatment of OA.

6.
Exp Ther Med ; 17(2): 1171-1181, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30679990

RESUMEN

The aim of the present study was to investigate the function of microRNA-146b on myocardial infarction and the mechanism. An MTT assay, Annexin V/propidium iodide (PI) apoptosis assay, ELISA kits, western blot analysis and a caspase-3/8 activity assay were used to measure cell growth, vascular apoptosis inflammatory factors, and the B-cell lymphoma 2-associated X protein (Bax), phosphatase and tensin homolog (PTEN), phosphoinositide 3-kinase (PI3K)/Akt/nuclear factor (NF)-κB signaling pathway. The expression of microRNA-146b was downregulated in the myocardial infarction rat model, compared with the control group. In an in vitro model of myocardial infarction, the downregulation of microRNA-146b increased inflammatory factors, vascular apoptosis, caspase-3/8 activity and the protein expression of Bax. MicroRNA-146b reduced vascular apoptosis, caspase-3/8 activity and the protein expression of Bax. MicroRNA-146b also regulated the PI3K/Akt/NF-κB signaling pathway to mediate vascular inflammation and apoptosis in myocardial infarction by PTEN. A PI3K inhibitor decreased the effect of microRNA-146b on vascular inflammation and apoptosis following myocardial infarction. In conclusion, microRNA-146b mediated vascular inflammation and apoptosis in patients with myocardial infarction, which may be associated with activation of the PI3K/Akt/NF-κB signaling pathway by PTEN.

7.
Molecules ; 21(2): 176, 2016 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-26840289

RESUMEN

Siamenoside I is the sweetest mogroside that has several kinds of bioactivities, and it is also a constituent of Siraitiae Fructus, a fruit and herb in China. Hitherto the metabolism of siamenoside I in human or animals remains unclear. To reveal its metabolic pathways, a high-performance liquid chromatography-electrospray ionization-ion trap-time of flight-multistage mass spectrometry (HPLC-ESI-IT-TOF-MS(n)) method was used to profile and identify its metabolites in rats. Altogether, 86 new metabolites were identified or tentatively identified, and 23 of them were also new metabolites of mogrosides. In rats, siamenoside I was found to undergo deglycosylation, hydroxylation, dehydrogenation, deoxygenation, isomerization, and glycosylation reactions. Among them, deoxygenation, pentahydroxylation, and didehydrogenation were novel metabolic reactions of mogrosides. The distributions of siamenoside I and its 86 metabolites in rat organs were firstly reported, and they were mainly distributed to intestine, stomach, kidney, and brain. The most widely distributed metabolite was mogroside IIIE. In addition, eight metabolites were bioactive according to literature. These findings would help to understand the metabolism and effective forms of siamenoside I and other mogrosides in vivo.


Asunto(s)
Glicósidos/química , Glicósidos/farmacocinética , Triterpenos/química , Animales , Química Encefálica , Cromatografía Líquida de Alta Presión/métodos , Humanos , Intestinos/química , Riñón/química , Ratas , Espectrometría de Masa por Ionización de Electrospray/métodos , Estómago/química , Distribución Tisular , Triterpenos/farmacocinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...