Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Appl Bio Mater ; 6(2): 857-864, 2023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-36633432

RESUMEN

Chemodynamic therapy (CDT) has been considered an emerging strategy for cancer treatment. However, the tumor microenvironment (TME) with slight acidity and restricted H2O2 limits the efficacy of CDT. Here, we report a Hf-Mn-TCPP (Hf = hafnium; Mn-TCPP = 5, 10, 15, 20-tetrakis (4-carboxyphenyl) porphyrinato-manganese (II) chloride) loaded with glucose oxidase (GOx) to realize starving-enhanced CDT. GOx consumes glucose to produce H2O2 and gluconic acid. Gluconic acid increases the acidity of TME and subsequently provides favorable conditions for the Fenton-like reaction based on Hf-Mn-TCPP. The results indicate that GOx-modified Hf-Mn-TCPP provided a great therapeutic effect in starvation-enhanced CDT in vitro and in vivo.


Asunto(s)
Glucosa Oxidasa , Estructuras Metalorgánicas , Peróxido de Hidrógeno
2.
Inorg Chem ; 61(41): 16307-16316, 2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36196889

RESUMEN

Photodynamic therapy (PDT) is quickly developing as a hopeful cancer treatment. However, hypoxic tumors, poor targeting, and photosensitizers (PS) aggregation limited the efficiency of PDT. Here, we report a hyaluronic acid (HA)-modified CeO2-nanoparticle-decorated metal-organic framework (PCN-224@CeO2-HA) to enhance PDT and achieve targeted treatment. CeO2 catalyzes H2O2 to produce O2 to solve hypoxia problems. HA could target the CD44 receptor, which is highly expressed on the tumor cell membranes. The growth of tumor cells 4T1 and MCF-7 was controlled distinctly after being incubated with PCN-224@CeO2-HA under laser irradiation, while the survival ability of normal cell LO2 was nearly unchanged. Importantly, PCN-224@CeO2-HA could be effectively aggregated within the tumor area after 12 h of injection, and the tumor growth was remarkably inhibited under laser irradiation. PCN-224@CeO2-HA presented good biocompatibility and an excellent antitumor effect, providing a new strategy to produce O2 in situ for enhanced PDT.


Asunto(s)
Estructuras Metalorgánicas , Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Línea Celular Tumoral , Ácido Hialurónico/farmacología , Peróxido de Hidrógeno , Estructuras Metalorgánicas/farmacología , Fármacos Fotosensibilizantes/farmacología , Triazenos
3.
Environ Sci Pollut Res Int ; 29(20): 29870-29886, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34993772

RESUMEN

Coalbed methane not only is a new clean energy source, but also has potential damage to ecological environment. Water and methane coexist in coal reservoir; understanding the adsorption of water on coal and its impact on pore structure and methane adsorption of coal is vital to evaluate the reserves and productivity of coalbed methane. In the paper, water adsorption characteristics of various rank coals are firstly investigated by ten mathematical models. The modified Dent model provides a best fit, followed by GAB and Dent models. For GAB model, the primary site adsorption is more difficult to reach saturation, and the contribution rate of the secondary site adsorption is surprisingly high at P/P0 approaching 0, which can be attributed to the possible overestimation of GAB monolayer adsorption capacity and secondary site adsorption. Besides, the low-rank coal sample YZG2 exhibits more prominent hysteresis than middle- to high-rank coals. The low-pressure hysteresis can be attributed to the water-water interactions over the primary site and the strengthened binding forces of water molecules in the water desorption process. In contrast, the high-pressure hysteresis largely depends on pore structure of coal such as ink-bottle pores, especially for the studied sample YZG2. Besides, pore analyses by low-temperature nitrogen adsorption method show that the pre-adsorbed water has remarkable influence on micropores smaller than 10 nm, and the micropores smaller than 4 nm almost disappear for water-equilibrated coals, which is closely related to the formed water clusters and capillary water in pore throats. This finding reveals that more methane gas can only be adsorbed in the larger pores of moist coal, and provides an explanation for water weakening methane adsorption capacity.


Asunto(s)
Carbón Mineral , Metano , Adsorción , Carbón Mineral/análisis , Metano/análisis , Nitrógeno/análisis , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...