Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
ACS Appl Mater Interfaces ; 16(36): 47571-47580, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39223875

RESUMEN

To achieve large-scale hydrogen storage for growing high energy density and long-life demands in end application, the 2LiBH4-MgH2 (LMBH) reactive hydride system attracts huge interest owing to its high hydrogen capacity and thermodynamically favorable reversibility. The sluggish dehydrogenation kinetics and unsatisfactory cycle life, however, remain two challenges. Herein, a bimetallic titanium-niobium oxide with a two-dimensional nanoflake structure (2D TiNb2O7) is selected elaborately as an active precursor that in situ transforms into TiB2 and NbB2 with ultrafine size and good dispersion in the LMBH system as highly efficient catalysts, giving rise to excellent kinetic properties with long-term cycling stability. For the LMBH system added with 5 wt% 2D TiNb2O7, 9.8 wt% H2 can be released within 20 min at 400 °C, after which the system can be fully hydrogenated in less than 5 min at 350 °C and 10 MPa H2. Moreover, a dehydrogenation capacity of 9.4 wt% can be maintained after 50 cycles corresponding to a retention of 96%, being the highest reported to date. The positive roles of TiB2 and NbB2 for kinetics and recyclability are from their catalytic nucleation effects for MgB2, a main dehydrogenation phase of LMBH, thus reducing the apparent activation energy, suppressing the formation of thermostable Li2B12H12 byproducts, and inhibiting the hydride coarsening. This work develops an advanced LMBH system, bringing hope for high-capacity, fast-response, and long-life hydrogen energy storage.

2.
Chem Soc Rev ; 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39239864

RESUMEN

Hydrogen electrocatalytic reactions, including the hydrogen evolution reaction (HER) and the hydrogen oxidation reaction (HOR), play a crucial role in a wide range of energy conversion and storage technologies. However, the HER and HOR display anomalous non-Nernstian pH dependent kinetics, showing two to three orders of magnitude sluggish kinetics in alkaline media compared to that in acidic media. Fundamental understanding of the origins of the intrinsic pH effect has attracted substantial interest from the electrocatalysis community. More critically, a fundamental molecular level understanding of this effect is still debatable, but is essential for developing active, stable, and affordable fuel cells and water electrolysis technologies. Against this backdrop, in this review, we provide a comprehensive overview of the intrinsic pH effect on hydrogen electrocatalysis, covering the experimental observations, underlying principles, and strategies for catalyst design. We discuss the strengths and shortcomings of various activity descriptors, including hydrogen binding energy (HBE) theory, bifunctional theory, potential of zero free charge (pzfc) theory, 2B theory and other theories, across different electrolytes and catalyst surfaces, and outline their interrelations where possible. Additionally, we highlight the design principles and research progress in improving the alkaline HER/HOR kinetics by catalyst design and electrolyte optimization employing the aforementioned theories. Finally, the remaining controversies about the pH effects on HER/HOR kinetics as well as the challenges and possible research directions in this field are also put forward. This review aims to provide researchers with a comprehensive understanding of the intrinsic pH effect and inspire the development of more cost-effective and durable alkaline water electrolyzers (AWEs) and anion exchange membrane fuel cells (AMFCs) for a sustainable energy future.

3.
Nat Commun ; 15(1): 6972, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143059

RESUMEN

Cations such as K+ play a key part in the CO2 electroreduction reaction, but their role in the reaction mechanism is still in debate. Here, we use a highly symmetric Ni-N4 structure to selectively probe the mechanistic influence of K+ and identify its interaction with chemisorbed CO2-. Our electrochemical kinetics study finds a shift in the rate-determining step in the presence of K+. Spectral evidence of chemisorbed CO2- from in-situ X-ray absorption spectroscopy and in-situ Raman spectroscopy pinpoints the origin of this rate-determining step shift. Grand canonical potential kinetics simulations - consistent with experimental results - further complement these findings. We thereby identify a long proposed non-covalent interaction between K+ and chemisorbed CO2-. This interaction stabilizes chemisorbed CO2- and thus switches the rate-determining step from concerted proton electron transfer to independent proton transfer. Consequently, this rate-determining step shift lowers the reaction barrier by eliminating the contribution of the electron transfer step. This K+-determined reaction pathway enables a lower energy barrier for CO2 electroreduction reaction than the competing hydrogen evolution reaction, leading to an exclusive selectivity for CO2 electroreduction reaction.

4.
Small ; : e2405148, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38978436

RESUMEN

The practical implementation of lithium-sulfur batteries is severely hindered by the rapid capacity fading due to the solubility of the intermediate lithium polysulfides (LiPSs) and the sluggish redox kinetics. Herein, high-entropy metal nitride nanocrystals (HEMN) embedded within nitrogen-doped concave porous carbon (N-CPC) polyhedra are rationally designed as a sulfur host via a facile zeolitic imidazolate framework (ZIF)-driven adsorption-nitridation process toward this challenge. The configuration of high-entropy with incorporated metal manganese (Mn) and chromium (Cr) will optimize the d-band center of active sites with more electrons occupied in antibonding orbitals, thus promoting the adsorption and catalytic conversion of LiPSs. While the concave porous carbon not only accommodates the volume change upon the cycling processes but also physically confines and exposes active sites for accelerated sulfur redox reactions. As a result, the resultant HEMN/N-CPC composites-based sulfur cathode can deliver a high specific capacity of 1274 mAh g-1 at 0.2 C and a low capacity decay rate of 0.044% after 1000 cycles at 1 C. Moreover, upon sulfur loading of 5.0 mg cm-2, the areal capacity of 5.0 mAh cm-2 can still be achieved. The present work may provide a new avenue for the design of high-performance cathodes in Li-S batteries.

5.
ACS Appl Mater Interfaces ; 16(23): 30462-30470, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38830131

RESUMEN

Garnet-type Li6.75La3Zr1.75Ta0.25O12 (LLZTO) is a promising solid-state electrolyte (SSE) because of its fast ionic conduction and notable chemical/electrochemical stability toward the lithium (Li) metal. However, poor interface wettability and large interface resistance between LLZTO and Li anode greatly restrict its practical applications. In this work, we develop an in situ chemical conversion strategy to construct a highly conductive Li2S@C layer on the surface of LLZTO, enabling improved interfacial wettability between LLZTO and the Li anode. The Li/Li2S@C-LLZTO-Li2S@C/Li symmetric cell has a low interface impedance of 78.5 Ω cm2, much lower than the 970 Ω cm2 of a Li/LLZTO/Li cell. Moreover, the Li/Li2S@C-LLZTO-Li2S@C/Li cell exhibits a high critical current density of 1.4 mA cm-2 and an ultralong stability of 3000 h at 0.1 mA cm-2. When used in a LiFePO4 battery, the Li/Li2S@C-LLZTO/LiFePO4 battery exhibits a high initial discharge capacity of 150.8 mA h g-1 at 0.2 C without lithium storage capacity attenuation during 200 cycles. This work provides a novel and feasible strategy to address interface issues of SSEs and achieve lithium-dendrite-free solid-state batteries.

6.
Adv Sci (Weinh) ; 11(26): e2401207, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38704676

RESUMEN

Developing high-efficiency and stable bifunctional electrocatalysts for water splitting remains a great challenge. Herein, NiMoO4 nanowires as sacrificial templates to synthesize Mo-doped NiFe Prussian blue analogs are employed, which can be easily phosphorized to Mo-doped Fe2xNi2(1-x)P nanotubes (Mo-FeNiP NTs). This synthesis method enables the controlled etching of NiMoO4 nanowires that results in a unique hollow nanotube architecture. As a bifunctional catalyst, the Mo-FeNiP NTs present lower overpotential and Tafel slope of 151.3 (232.6) mV at 100 mA cm-2 and 76.2 (64.7) mV dec-1 for HER (OER), respectively. Additionally, it only requires an ultralow cell voltage of 1.47 V to achieve 10 mA cm-2 for overall water splitting and can steadily operate for 200 h at 100 mA cm-2. First-principles calculations demonstrate that Mo doping can effectively adjust the electron redistribution of the Ni hollow sites to optimize the hydrogen adsorption-free energy for HER. Besides, in situ Raman characterization reveals the dissolving of doped Mo can promote a rapid surface reconstruction on Mo-FeNiP NTs to dynamically stable (Fe)Ni-oxyhydroxide layers, serving as the actual active species for OER. The work proposes a rational approach addressed by electron manipulation and surface reconstruction of bimetallic phosphides to regulate both the HER and OER activity.

7.
Small ; : e2401645, 2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38764309

RESUMEN

Anionic redox chemistry enables extraordinary capacity for Li- and Mn-rich layered oxides (LMROs) cathodes. Unfortunately, irreversible surface oxygen evolution evokes the pernicious phase transition, structural deterioration, and severe electrode-electrolyte interface side reaction with element dissolution, resulting in fast capacity and voltage fading of LMROs during cycling and hindering its commercialization. Herein, a redox couple strategy is proposed by utilizing copper phthalocyanine (CuPc) to address the irreversibility of anionic redox. The Cu-N synergistic effect of CuPc could not only inhibit surface oxygen evolution by reducing the peroxide ion O2 2- back to lattice oxygen O2-, but also enhance the reaction activity and reversibility of anionic redox in bulk to achieve a higher capacity and cycling stability. Moreover, the CuPc strategy suppresses the interface side reaction and induces the forming of a uniform and robust LiF-rich cathode electrolyte, interphase (CEI) to significantly eliminate transition metal dissolution. As a result, the CuPc-enhanced LMRO cathode shows superb cycling performance with a capacity retention of 95.0% after 500 long-term cycles. This study sheds light on the great effect of N-based redox couple to regulate anionic redox behavior and promote the development of high energy density and high stability LMROs cathode.

8.
ACS Nano ; 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38334290

RESUMEN

LiBH4 is one of the most promising candidates for use in all-solid-state lithium batteries. However, the main challenges of LiBH4 are the poor Li-ion conductivity at room temperature, excessive dendrite formation, and the narrow voltage window, which hamper practical application. Herein, we fabricate a flexible polymeric electronic shielding layer on the particle surfaces of LiBH4. The electronic conductivity of the primary LiBH4 is reduced by 2 orders of magnitude, to 1.15 × 10-9 S cm-1 at 25 °C, due to the high electron affinity of the electronic shielding layer; this localizes the electrons around the BH4- anions, which eliminates electronic leakage from the anionic framework and leads to a 68-fold higher critical electrical bias for dendrite growth on the particle surfaces. Contrary to the previously reported work, the shielding layer also ensures fast Li-ion conduction due to the fast-rotational dynamics of the BH4- species and the high Li-ion (carrier) concentration on the particle surfaces. In addition, the flexibility of the layer guarantees its structural integrity during Li plating and stripping. Therefore, our LiBH4-based solid-state electrolyte exhibits a high critical current density (11.43 mA cm-2) and long cycling stability of 5000 h (5.70 mA cm-2) at 25 °C. More importantly, the electrolyte had a wide operational temperature window (-30-150 °C). We believe that our findings provide a perspective with which to avoid dendrite formation in hydride solid-state electrolytes and provide high-performance all-solid-state lithium batteries.

9.
Small ; 20(29): e2311500, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38372501

RESUMEN

Singlet oxygen (term symbol 1Δg, hereafter 1O2), a reactive oxygen species, has recently attracted increasing interest in the field of rechargeable batteries and electrocatalysis and photocatalysis. These sustainable energy conversion and storage technologies are of vital significance to replace fossil fuels and promote carbon neutrality and finally tackle the energy crisis and climate change. Herein, the recent progresses of 1O2 for energy storage and conversion is summarized, including physical and chemical properties, formation mechanisms, detection technologies, side reactions in rechargeable batteries and corresponding inhibition strategies, and applications in electrocatalysis and photocatalysis. The formation mechanisms and inhibition strategies of 1O2 in particular aprotic lithium-oxygen (Li-O2) batteries are highlighted, and the applications of 1O2 in photocatalysis and electrocatalysis is also emphasized. Moreover, the confronting challenges and promising directions of 1O2 in energy conversion and storage systems are discussed.

10.
Nat Commun ; 15(1): 928, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38296957

RESUMEN

Non-dissociative chemisorption solid-state storage of hydrogen molecules in host materials is promising to achieve both high hydrogen capacity and uptake rate, but there is the lack of non-dissociative hydrogen storage theories that can guide the rational design of the materials. Herein, we establish generalized design principle to design such materials via the first-principles calculations, theoretical analysis and focused experimental verifications of a series of heteroatom-doped-graphene-supported Ca single-atom carbon nanomaterials as efficient non-dissociative solid-state hydrogen storage materials. An intrinsic descriptor has been proposed to correlate the inherent properties of dopants with the hydrogen storage capability of the carbon-based host materials. The generalized design principle and the intrinsic descriptor have the predictive ability to screen out the best dual-doped-graphene-supported Ca single-atom hydrogen storage materials. The dual-doped materials have much higher hydrogen storage capability than the sole-doped ones, and exceed the current best carbon-based hydrogen storage materials.

11.
Adv Mater ; 36(1): e2308332, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37730213

RESUMEN

Inorganic all-solid-state sodium batteries (IASSSBs) are emerged as promising candidates to replace commercial lithium-ion batteries in large-scale energy storage systems due to their potential advantages, such as abundant raw materials, robust safety, low price, high-energy density, favorable reliability and stability. Inorganic sodium solid electrolytes (ISSEs) are an indispensable component of IASSSBs, gaining significant attention. Herein, this review begins by discussing the fundamentals of ISSEs, including their ionic conductivity, mechanical property, chemical and electrochemical stabilities. It then presents the crystal structures of advanced ISSEs (e.g., ß/ß''-alumina, NASICON, sulfides, complex hydride and halide electrolytes) and the related issues, along with corresponding modification strategies. The review also outlines effective approaches for forming intimate interfaces between ISSEs and working electrodes. Finally, current challenges and critical perspectives for the potential developments and possible directions to improve interfacial contacts for future practical applications of ISSEs are highlighted. This comprehensive review aims to advance the understanding and development of next-generation rechargeable IASSSBs.

12.
Structure ; 32(2): 168-176.e2, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38101402

RESUMEN

ATP-sensitive potassium channels (KATP) are inhibited by ATP but activated by Mg-ADP, coupling the intracellular ATP/ADP ratio to the potassium conductance of the plasma membrane. Although there has been progress in determining the structure of KATP, the functional significance of the domain-domain interface in the gating properties of KATP channels remains incompletely understood. In this study, we define the structure of KATP as two modules: KATPcore and SURABC. Based on this model, we identified two functionally important interfaces between these two modules, namely interface I and interface II. Further structure-guided mutagenesis experiments indicate that destabilizing interface II by deleting ECL3 on the SUR1 subunit impairs KNtp-independent Mg-ADP activation, demonstrating the essential role of intramolecular interactions between KATPcore and SURABC in Mg-ADP activation. Additionally, interface II is functionally conserved between SUR1 and SUR2, and the hydrophobic residue F351 on ECL3 of SUR1 is crucial for maintaining the stability of this interface.


Asunto(s)
Canales KATP , Canales de Potasio de Rectificación Interna , Canales KATP/genética , Canales KATP/metabolismo , Receptores de Sulfonilureas/genética , Receptores de Sulfonilureas/metabolismo , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio de Rectificación Interna/química , Canales de Potasio de Rectificación Interna/metabolismo , Adenosina Trifosfato/metabolismo , Membrana Celular/metabolismo
13.
Adv Sci (Weinh) ; : e2306692, 2023 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-38145958

RESUMEN

Phase change materials that can absorb or release large amounts of heat during phase transition, play a critical role in many important processes, including heat dissipation, thermal energy storage, and solar energy utilization. In general, phase change materials are usually encapsulated in passive modules to provide assurance for energy management. The shape and mechanical changes of these materials are greatly ignored. An emerging class of phase change materials, liquid metals (LMs) have attracted significant interest beyond thermal management, including in transformable robots, flexible electronics, soft actuators, and biomedicine. Interestingly, the melting point of LM is highly tunable around body temperature, allowing it to experience considerable stiffness change when interacting with human organisms during solid-liquid change, which brings about novel phenomena, applied technologies, and therapeutic methods, such as mechanical destruction of tumors, neural electrode implantation technique, and embolization therapy. This review focuses on the technology, regulation, and application of the phase change process along with diverse changes of LM to facilitate emerging biomedical applications based on the influences of mechanical stiffness change and versatile regulation strategies. Typical applications will also be categorized and summarized. Lastly, the advantages and challenges of using the unique and reversible process for biomedicine will be discussed.

14.
Heliyon ; 9(11): e21765, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38027989

RESUMEN

Metal hydrides have been demonstrated as one of the promising high-capacity anode materials for Li-ion batteries. Herein, we report the electrochemical properties and lithium storage mechanism of a Li-rich complex metal hydride (Li3AlH6). Li3AlH6 exhibits a lithiation capacity of ∼1729 mAh/g with a plateau potential of ∼0.33 V vs. Li+/Li at the first discharge cycle. Experimental results demonstrate that Li3AlH6 is converted into LiH and LiAl in the initial electrochemical lithiation process. In addition, Li3AlH6 also possesses a good cycling stability that 71 % of the second discharge capacity is retained after 20 cycles. More importantly, the cycling performance of Li3AlH6 can be improved to 100 cycles via adjusting electrolyte composition. This study provides a new approach for developing the lithium storage properties of anode materials for Li-ion batteries.

15.
ACS Nano ; 17(17): 16478-16490, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37589462

RESUMEN

Potassium-ion batteries (KIBs) are promising candidates for large-scale energy storage devices due to their high energy density and low cost. However, the large potassium-ion radius leads to its sluggish diffusion kinetics during intercalation into the lattice of the electrode material, resulting in electrode pulverization and poor cycle stability. Herein, vanadium trioxide anodes with different oxygen vacancy concentrations (V2O2.9, V2O2.8, and V2O2.7 determined by the neutron diffraction) are developed for KIBs. The V2O2.8 anode is optimal and exhibits excellent potassium storage performance due to the realization of expanded interlayer spacing and efficient ion/electron transport. In situ X-ray diffraction indicates that V2O2.8 is a zero-strain anode with a volumetric strain of 0.28% during the charge/discharge process. Density functional theory calculations show that the impacts of oxygen defects are embodied in reducing the band gap, increasing electron transfer ability, and lowering the diffusion energy barriers for potassium ions. As a result, the electrode of nanosized V2O2.8 embedded in porous reticular carbon (V2O2.8@PRC) delivers high reversible capacity (362 mAh g-1 at 0.05 A g-1), ultralong cycling stability (98.8% capacity retention after 3000 cycles at 2 A g-1), and superior pouch-type full-cell performance (221 mAh g-1 at 0.05 A g-1). This work presents an oxygen defect engineering strategy for ultrastable KIBs.

16.
J Colloid Interface Sci ; 650(Pt B): 1476-1489, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37481785

RESUMEN

Low electronic conductivity and poor properties at high rate have hindered the application of Na3V2(PO4)3 (NVP). Herein, a facile synthesis of NVP with porous carbon skeleton is proposed. Specifically, Na2CO3 and glucose, acting as hard templates, are introduced to the precursors after initial firing stage, and Na2CO3 particles are removed by flushing after the final heatment. Due to the thermal conductivity of Na2CO3, the secondary addition of glucose can generate distinctive graphitized porous carbon skeleton, which bonds well with the amorphous carbon coating to construct stable and conductive network. The porous construction can alleviate the stress and strain caused by the current impact through deformation. Furthermore, ex-situ EIS reveals the highly conductive carbon skeleton can significantly reduce the surface resistance and result in an increase of effective voltage to promote the de-intercalation of Na+. Moreover, the ex-situ X-ray photoelectron spectroscopy (XPS) at different potentials confirms the stabilized existence of VOC bonds. Benefiting from the unique carbon skeleton, the PC-NVP releases capacity of 116.9 mAh g-1 at 0.1C. Even at 120C, PC-NVP still exhibits a high capacity of 84.7 mAh g-1, retaining a value of 41.3 mAh g-1 after 16,000 cycles, corresponding to a low decay rate of 0.0032% per cycle.

17.
Adv Mater ; 35(45): e2304285, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37487246

RESUMEN

LiBH4 is a promising solid-state electrolyte (SE) due to its thermodynamic stability to Li. However, poor Li-ion conductivities at room temperature, low oxidative stabilities, and severe dendrite growth hamper its application. In this work, a partial dehydrogenation strategy is adopted to in situ generate an electronic blocking layer dispersed of LiH, addressing the above three issues simultaneously. The electrically insulated LiH reduces the electronic conductivity by two orders of magnitude, leading to a 32.0-times higher critical electrical bias for dendrite growth on the particle surfaces than that of the counterpart. Additionally, this layer not only promotes the Li-ion conductance by stimulating coordinated rotations of BH4 - and B12 H12 2- , contributing to a Li-ion conductivity of 1.38 × 10-3 S cm-1 at 25 °C, but also greatly enhances oxidation stability by localizing the electron density on BH4 - , extending its voltage window to 6.0 V. Consequently, this electrolyte exhibits an unprecedented critical current density (CCD) of 15.12 mA cm-2 at 25 °C, long-term Li plating and stripping stability for 2700 h, and a wide temperature window for dendrite inhibition from -30 to 150 °C. Its Li-LiCoO2 cell displays high reversibility within 3.0-5.0 V. It is believed that this work provides a clear direction for solid-state hydride electrolytes.

18.
Small ; 19(38): e2302188, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37259260

RESUMEN

Tin sulfide (SnS) is an attractive anode for sodium ion batteries (NIBs) because of its high theoretical capacity, while it seriously suffers from the inherently poor conductivity and huge volume variation during the cycling process, leading to inferior lifespan. To intrinsically maximize the sodium storage of SnS, herein, lithium azides (LiN3 )-induced SnS quantum dots (QDs) are first reported using a simple electrospinning strategy, where SnS QDs are uniformly distributed in the carbon fibers. Taking the advantage of LiN3 , which can effectively prevent the growth of crystal nuclei during the thermal treatment, the well-dispersed SnS QDs performs superior Na+ transfer kinetics and pseudocapacitive when used as an anode material for NIBs. The 3D SnS quantum dots embedded uniformly in N-doped nanofibers (SnS QDs@NCF) electrodes display superior long cycling life-span (484.6 mAh g-1 after 5800 cycles at 2 A g-1 and 430.9 mAh g-1 after 7880 cycles at 10 A g-1 ), as well as excellent rate capability (422.3 mAh g-1 at 20 A g-1 ). This fabrication of transition metal sulfides QDs composites provide a feasible strategy to develop NIBs with long life-span and superior rate capability to pave its practical implementation.

19.
Small ; 19(34): e2301574, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37093221

RESUMEN

The development of electric vehicles has received worldwide attention in the background of reducing carbon emissions, wherein lithium-ion batteries (LIBs) become the primary energy supply systems. However, commercial graphite-based anodes in LIBs currently confront significant difficulty in enduring ultrahigh power input due to the slow Li+ transport rate and the low intercalation potential. This will, in turn, cause dramatic capacity decay and lithium plating. The 2D layered materials (2DLMs) recently emerge as new fast-charging anodes and hold huge promise for resolving the problems owing to the synergistic effect of a lower Li+ diffusion barrier, a proper Li+ intercalation potential, and a higher theoretical specific capacity with using them. In this review, the background and fundamentals of fast-charging for LIBs are first introduced. Then the research progress recently made for 2DLMs used for fast-charging anodes are elaborated and discussed. Some emerging research directions in this field with a short outlook on future studies are further discussed.

20.
Small ; 19(30): e2300215, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37058082

RESUMEN

Sodium metal battery is supposed to be a propitious technology for high-energy storage application owing to the advantages of natural abundance and low cost. Unfortunately, the uncontrollable dendrite growth critically hampers its practical implementation. Herein, an inorganic/organic hybrid layer of NaF/CF/CC on the surface of Na foil (IOHL-Na) is designed and synthesized through the in situ reaction of polyvinylidene fluoride (PVDF) and metallic sodium. This protective layer possesses satisfactory Young's modulus, good kinetic property, and sodiophilicity, which can distinctly stabilize Na metal anode. As a result, the symmetric IOHL-Na cell achieves a lifespan of 770 h at 1 mAh cm-2 /1 mA cm-2 in carbonate electrolyte. The assembled full battery of IOHL-Na||Na3 V2 (PO4 )3 delivers a high discharge capacity of 85 mAh g-1 at 10 C after 600 cycles under ambient temperature. Furthermore, the IOHL-Na||Na3 V2 (PO4 )3 cell still can steadily operate at 10 C for 600 cycles at 55 °C. And when testing at an ultralow temperature of -40 °C, the full cell achieves 40 mAh g-1 at 0.5 C with a prolonged lifespan of 450 cycles. This work offers a new approach to protect the metal sodium anode without dendrite growth under wide temperatures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...