RESUMEN
The specific capacity of Li- and Mn-rich layered oxide (LMROs) cathodes can be enhanced by the oxidation of lattice oxygen at high voltages. Nevertheless, an irreversible oxygen loss emerges with cycling, which triggers interlocking surface/interface issues and results in the fast deterioration of cycling performance. Herein, we prepare a surface modified LMRO electrode by one step doctor-blade casting and introducing a benzoquinone species DBBQ redox couple. The electrochemical test shows that the DBBQ-modified electrode has a high reversible capacity (>320 mAh g-1) and excellent rate performance, while the cyclic stability has been significantly improved as well. The capacity retention reaches as high as 93.3% after 500 cycles at 1 C. Mechanism analysis shows that DBBQ can not only play a redox couple in LMROs which achieves the adsorption and reduction of surface oxygen gas but also significantly enhance anionic redox in the bulk, thus realizing extraordinary capacity.
RESUMEN
Mammalian voltage-gated calcium channels (CaV) play critical roles in cardiac excitability, synaptic transmission, and gene transcription. Dysfunctions in CaV are implicated in a variety of cardiac and neurodevelopmental disorders. Current pharmacological approaches to enhance CaV activity are limited by off-target effects, drug metabolism issues, cytotoxicity, and imprecise modulation. Additionally, genetically-encoded channel activators and optogenetic tools are restricted by gene delivery challenges and biosafety concerns. Here a novel terahertz (THz) wave-based method to upregulate CaV1.2, a key subtype of CaV, and boost CaV1-mediated Ca2+ signaling in neurons without introducing exogenous DNA is presented. Using molecular dynamics simulations, it is shown that 42.5 THz (7.05 µm, 1418 cm-1) waves enhance Ca2+ conductance in CaV1.2 by resonating with the stretching mode of the -COO- group in the selectivity filter. Electrophysiological recordings and Ca2+ imaging confirm that these waves rapidly, reversibly, and non-thermally increase calcium influx of CaV1.2 in HEK293 cells and induce acute Ca2+ signals in neurons. Furthermore, this irradiation upregulates critical CaV1 signals, including CREB phosphorylation and c-Fos expression, in vitro and in vivo, without raising significant biosafety risks. This DNA-free, non-invasive approach offers a promising approach for modulating CaV gating and Ca2+ signaling and treating diseases characterized by deficits in CaV functions.
RESUMEN
Hydrogen electrocatalytic reactions, including the hydrogen evolution reaction (HER) and the hydrogen oxidation reaction (HOR), play a crucial role in a wide range of energy conversion and storage technologies. However, the HER and HOR display anomalous non-Nernstian pH dependent kinetics, showing two to three orders of magnitude sluggish kinetics in alkaline media compared to that in acidic media. Fundamental understanding of the origins of the intrinsic pH effect has attracted substantial interest from the electrocatalysis community. More critically, a fundamental molecular level understanding of this effect is still debatable, but is essential for developing active, stable, and affordable fuel cells and water electrolysis technologies. Against this backdrop, in this review, we provide a comprehensive overview of the intrinsic pH effect on hydrogen electrocatalysis, covering the experimental observations, underlying principles, and strategies for catalyst design. We discuss the strengths and shortcomings of various activity descriptors, including hydrogen binding energy (HBE) theory, bifunctional theory, potential of zero free charge (pzfc) theory, 2B theory and other theories, across different electrolytes and catalyst surfaces, and outline their interrelations where possible. Additionally, we highlight the design principles and research progress in improving the alkaline HER/HOR kinetics by catalyst design and electrolyte optimization employing the aforementioned theories. Finally, the remaining controversies about the pH effects on HER/HOR kinetics as well as the challenges and possible research directions in this field are also put forward. This review aims to provide researchers with a comprehensive understanding of the intrinsic pH effect and inspire the development of more cost-effective and durable alkaline water electrolyzers (AWEs) and anion exchange membrane fuel cells (AMFCs) for a sustainable energy future.
RESUMEN
To achieve large-scale hydrogen storage for growing high energy density and long-life demands in end application, the 2LiBH4-MgH2 (LMBH) reactive hydride system attracts huge interest owing to its high hydrogen capacity and thermodynamically favorable reversibility. The sluggish dehydrogenation kinetics and unsatisfactory cycle life, however, remain two challenges. Herein, a bimetallic titanium-niobium oxide with a two-dimensional nanoflake structure (2D TiNb2O7) is selected elaborately as an active precursor that in situ transforms into TiB2 and NbB2 with ultrafine size and good dispersion in the LMBH system as highly efficient catalysts, giving rise to excellent kinetic properties with long-term cycling stability. For the LMBH system added with 5 wt% 2D TiNb2O7, 9.8 wt% H2 can be released within 20 min at 400 °C, after which the system can be fully hydrogenated in less than 5 min at 350 °C and 10 MPa H2. Moreover, a dehydrogenation capacity of 9.4 wt% can be maintained after 50 cycles corresponding to a retention of 96%, being the highest reported to date. The positive roles of TiB2 and NbB2 for kinetics and recyclability are from their catalytic nucleation effects for MgB2, a main dehydrogenation phase of LMBH, thus reducing the apparent activation energy, suppressing the formation of thermostable Li2B12H12 byproducts, and inhibiting the hydride coarsening. This work develops an advanced LMBH system, bringing hope for high-capacity, fast-response, and long-life hydrogen energy storage.
RESUMEN
Cations such as K+ play a key part in the CO2 electroreduction reaction, but their role in the reaction mechanism is still in debate. Here, we use a highly symmetric Ni-N4 structure to selectively probe the mechanistic influence of K+ and identify its interaction with chemisorbed CO2-. Our electrochemical kinetics study finds a shift in the rate-determining step in the presence of K+. Spectral evidence of chemisorbed CO2- from in-situ X-ray absorption spectroscopy and in-situ Raman spectroscopy pinpoints the origin of this rate-determining step shift. Grand canonical potential kinetics simulations - consistent with experimental results - further complement these findings. We thereby identify a long proposed non-covalent interaction between K+ and chemisorbed CO2-. This interaction stabilizes chemisorbed CO2- and thus switches the rate-determining step from concerted proton electron transfer to independent proton transfer. Consequently, this rate-determining step shift lowers the reaction barrier by eliminating the contribution of the electron transfer step. This K+-determined reaction pathway enables a lower energy barrier for CO2 electroreduction reaction than the competing hydrogen evolution reaction, leading to an exclusive selectivity for CO2 electroreduction reaction.
RESUMEN
The practical implementation of lithium-sulfur batteries is severely hindered by the rapid capacity fading due to the solubility of the intermediate lithium polysulfides (LiPSs) and the sluggish redox kinetics. Herein, high-entropy metal nitride nanocrystals (HEMN) embedded within nitrogen-doped concave porous carbon (N-CPC) polyhedra are rationally designed as a sulfur host via a facile zeolitic imidazolate framework (ZIF)-driven adsorption-nitridation process toward this challenge. The configuration of high-entropy with incorporated metal manganese (Mn) and chromium (Cr) will optimize the d-band center of active sites with more electrons occupied in antibonding orbitals, thus promoting the adsorption and catalytic conversion of LiPSs. While the concave porous carbon not only accommodates the volume change upon the cycling processes but also physically confines and exposes active sites for accelerated sulfur redox reactions. As a result, the resultant HEMN/N-CPC composites-based sulfur cathode can deliver a high specific capacity of 1274 mAh g-1 at 0.2 C and a low capacity decay rate of 0.044% after 1000 cycles at 1 C. Moreover, upon sulfur loading of 5.0 mg cm-2, the areal capacity of 5.0 mAh cm-2 can still be achieved. The present work may provide a new avenue for the design of high-performance cathodes in Li-S batteries.
RESUMEN
Garnet-type Li6.75La3Zr1.75Ta0.25O12 (LLZTO) is a promising solid-state electrolyte (SSE) because of its fast ionic conduction and notable chemical/electrochemical stability toward the lithium (Li) metal. However, poor interface wettability and large interface resistance between LLZTO and Li anode greatly restrict its practical applications. In this work, we develop an in situ chemical conversion strategy to construct a highly conductive Li2S@C layer on the surface of LLZTO, enabling improved interfacial wettability between LLZTO and the Li anode. The Li/Li2S@C-LLZTO-Li2S@C/Li symmetric cell has a low interface impedance of 78.5 Ω cm2, much lower than the 970 Ω cm2 of a Li/LLZTO/Li cell. Moreover, the Li/Li2S@C-LLZTO-Li2S@C/Li cell exhibits a high critical current density of 1.4 mA cm-2 and an ultralong stability of 3000 h at 0.1 mA cm-2. When used in a LiFePO4 battery, the Li/Li2S@C-LLZTO/LiFePO4 battery exhibits a high initial discharge capacity of 150.8 mA h g-1 at 0.2 C without lithium storage capacity attenuation during 200 cycles. This work provides a novel and feasible strategy to address interface issues of SSEs and achieve lithium-dendrite-free solid-state batteries.
RESUMEN
Developing high-efficiency and stable bifunctional electrocatalysts for water splitting remains a great challenge. Herein, NiMoO4 nanowires as sacrificial templates to synthesize Mo-doped NiFe Prussian blue analogs are employed, which can be easily phosphorized to Mo-doped Fe2xNi2(1-x)P nanotubes (Mo-FeNiP NTs). This synthesis method enables the controlled etching of NiMoO4 nanowires that results in a unique hollow nanotube architecture. As a bifunctional catalyst, the Mo-FeNiP NTs present lower overpotential and Tafel slope of 151.3 (232.6) mV at 100 mA cm-2 and 76.2 (64.7) mV dec-1 for HER (OER), respectively. Additionally, it only requires an ultralow cell voltage of 1.47 V to achieve 10 mA cm-2 for overall water splitting and can steadily operate for 200 h at 100 mA cm-2. First-principles calculations demonstrate that Mo doping can effectively adjust the electron redistribution of the Ni hollow sites to optimize the hydrogen adsorption-free energy for HER. Besides, in situ Raman characterization reveals the dissolving of doped Mo can promote a rapid surface reconstruction on Mo-FeNiP NTs to dynamically stable (Fe)Ni-oxyhydroxide layers, serving as the actual active species for OER. The work proposes a rational approach addressed by electron manipulation and surface reconstruction of bimetallic phosphides to regulate both the HER and OER activity.
RESUMEN
Anionic redox chemistry enables extraordinary capacity for Li- and Mn-rich layered oxides (LMROs) cathodes. Unfortunately, irreversible surface oxygen evolution evokes the pernicious phase transition, structural deterioration, and severe electrode-electrolyte interface side reaction with element dissolution, resulting in fast capacity and voltage fading of LMROs during cycling and hindering its commercialization. Herein, a redox couple strategy is proposed by utilizing copper phthalocyanine (CuPc) to address the irreversibility of anionic redox. The Cu-N synergistic effect of CuPc could not only inhibit surface oxygen evolution by reducing the peroxide ion O2 2- back to lattice oxygen O2-, but also enhance the reaction activity and reversibility of anionic redox in bulk to achieve a higher capacity and cycling stability. Moreover, the CuPc strategy suppresses the interface side reaction and induces the forming of a uniform and robust LiF-rich cathode electrolyte, interphase (CEI) to significantly eliminate transition metal dissolution. As a result, the CuPc-enhanced LMRO cathode shows superb cycling performance with a capacity retention of 95.0% after 500 long-term cycles. This study sheds light on the great effect of N-based redox couple to regulate anionic redox behavior and promote the development of high energy density and high stability LMROs cathode.
RESUMEN
Singlet oxygen (term symbol 1Δg, hereafter 1O2), a reactive oxygen species, has recently attracted increasing interest in the field of rechargeable batteries and electrocatalysis and photocatalysis. These sustainable energy conversion and storage technologies are of vital significance to replace fossil fuels and promote carbon neutrality and finally tackle the energy crisis and climate change. Herein, the recent progresses of 1O2 for energy storage and conversion is summarized, including physical and chemical properties, formation mechanisms, detection technologies, side reactions in rechargeable batteries and corresponding inhibition strategies, and applications in electrocatalysis and photocatalysis. The formation mechanisms and inhibition strategies of 1O2 in particular aprotic lithium-oxygen (Li-O2) batteries are highlighted, and the applications of 1O2 in photocatalysis and electrocatalysis is also emphasized. Moreover, the confronting challenges and promising directions of 1O2 in energy conversion and storage systems are discussed.
RESUMEN
LiBH4 is one of the most promising candidates for use in all-solid-state lithium batteries. However, the main challenges of LiBH4 are the poor Li-ion conductivity at room temperature, excessive dendrite formation, and the narrow voltage window, which hamper practical application. Herein, we fabricate a flexible polymeric electronic shielding layer on the particle surfaces of LiBH4. The electronic conductivity of the primary LiBH4 is reduced by 2 orders of magnitude, to 1.15 × 10-9 S cm-1 at 25 °C, due to the high electron affinity of the electronic shielding layer; this localizes the electrons around the BH4- anions, which eliminates electronic leakage from the anionic framework and leads to a 68-fold higher critical electrical bias for dendrite growth on the particle surfaces. Contrary to the previously reported work, the shielding layer also ensures fast Li-ion conduction due to the fast-rotational dynamics of the BH4- species and the high Li-ion (carrier) concentration on the particle surfaces. In addition, the flexibility of the layer guarantees its structural integrity during Li plating and stripping. Therefore, our LiBH4-based solid-state electrolyte exhibits a high critical current density (11.43 mA cm-2) and long cycling stability of 5000 h (5.70 mA cm-2) at 25 °C. More importantly, the electrolyte had a wide operational temperature window (-30-150 °C). We believe that our findings provide a perspective with which to avoid dendrite formation in hydride solid-state electrolytes and provide high-performance all-solid-state lithium batteries.
RESUMEN
Non-dissociative chemisorption solid-state storage of hydrogen molecules in host materials is promising to achieve both high hydrogen capacity and uptake rate, but there is the lack of non-dissociative hydrogen storage theories that can guide the rational design of the materials. Herein, we establish generalized design principle to design such materials via the first-principles calculations, theoretical analysis and focused experimental verifications of a series of heteroatom-doped-graphene-supported Ca single-atom carbon nanomaterials as efficient non-dissociative solid-state hydrogen storage materials. An intrinsic descriptor has been proposed to correlate the inherent properties of dopants with the hydrogen storage capability of the carbon-based host materials. The generalized design principle and the intrinsic descriptor have the predictive ability to screen out the best dual-doped-graphene-supported Ca single-atom hydrogen storage materials. The dual-doped materials have much higher hydrogen storage capability than the sole-doped ones, and exceed the current best carbon-based hydrogen storage materials.
RESUMEN
Inorganic all-solid-state sodium batteries (IASSSBs) are emerged as promising candidates to replace commercial lithium-ion batteries in large-scale energy storage systems due to their potential advantages, such as abundant raw materials, robust safety, low price, high-energy density, favorable reliability and stability. Inorganic sodium solid electrolytes (ISSEs) are an indispensable component of IASSSBs, gaining significant attention. Herein, this review begins by discussing the fundamentals of ISSEs, including their ionic conductivity, mechanical property, chemical and electrochemical stabilities. It then presents the crystal structures of advanced ISSEs (e.g., ß/ß''-alumina, NASICON, sulfides, complex hydride and halide electrolytes) and the related issues, along with corresponding modification strategies. The review also outlines effective approaches for forming intimate interfaces between ISSEs and working electrodes. Finally, current challenges and critical perspectives for the potential developments and possible directions to improve interfacial contacts for future practical applications of ISSEs are highlighted. This comprehensive review aims to advance the understanding and development of next-generation rechargeable IASSSBs.
RESUMEN
Phase change materials that can absorb or release large amounts of heat during phase transition, play a critical role in many important processes, including heat dissipation, thermal energy storage, and solar energy utilization. In general, phase change materials are usually encapsulated in passive modules to provide assurance for energy management. The shape and mechanical changes of these materials are greatly ignored. An emerging class of phase change materials, liquid metals (LMs) have attracted significant interest beyond thermal management, including in transformable robots, flexible electronics, soft actuators, and biomedicine. Interestingly, the melting point of LM is highly tunable around body temperature, allowing it to experience considerable stiffness change when interacting with human organisms during solid-liquid change, which brings about novel phenomena, applied technologies, and therapeutic methods, such as mechanical destruction of tumors, neural electrode implantation technique, and embolization therapy. This review focuses on the technology, regulation, and application of the phase change process along with diverse changes of LM to facilitate emerging biomedical applications based on the influences of mechanical stiffness change and versatile regulation strategies. Typical applications will also be categorized and summarized. Lastly, the advantages and challenges of using the unique and reversible process for biomedicine will be discussed.
Asunto(s)
Tecnología Biomédica , Metales , Transición de Fase , Humanos , Tecnología Biomédica/métodos , Metales/químicaRESUMEN
ATP-sensitive potassium channels (KATP) are inhibited by ATP but activated by Mg-ADP, coupling the intracellular ATP/ADP ratio to the potassium conductance of the plasma membrane. Although there has been progress in determining the structure of KATP, the functional significance of the domain-domain interface in the gating properties of KATP channels remains incompletely understood. In this study, we define the structure of KATP as two modules: KATPcore and SURABC. Based on this model, we identified two functionally important interfaces between these two modules, namely interface I and interface II. Further structure-guided mutagenesis experiments indicate that destabilizing interface II by deleting ECL3 on the SUR1 subunit impairs KNtp-independent Mg-ADP activation, demonstrating the essential role of intramolecular interactions between KATPcore and SURABC in Mg-ADP activation. Additionally, interface II is functionally conserved between SUR1 and SUR2, and the hydrophobic residue F351 on ECL3 of SUR1 is crucial for maintaining the stability of this interface.
Asunto(s)
Canales KATP , Canales de Potasio de Rectificación Interna , Canales KATP/genética , Canales KATP/metabolismo , Receptores de Sulfonilureas/genética , Receptores de Sulfonilureas/metabolismo , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio de Rectificación Interna/química , Canales de Potasio de Rectificación Interna/metabolismo , Adenosina Trifosfato/metabolismo , Membrana Celular/metabolismoRESUMEN
Metal hydrides have been demonstrated as one of the promising high-capacity anode materials for Li-ion batteries. Herein, we report the electrochemical properties and lithium storage mechanism of a Li-rich complex metal hydride (Li3AlH6). Li3AlH6 exhibits a lithiation capacity of â¼1729 mAh/g with a plateau potential of â¼0.33 V vs. Li+/Li at the first discharge cycle. Experimental results demonstrate that Li3AlH6 is converted into LiH and LiAl in the initial electrochemical lithiation process. In addition, Li3AlH6 also possesses a good cycling stability that 71 % of the second discharge capacity is retained after 20 cycles. More importantly, the cycling performance of Li3AlH6 can be improved to 100 cycles via adjusting electrolyte composition. This study provides a new approach for developing the lithium storage properties of anode materials for Li-ion batteries.
RESUMEN
Potassium-ion batteries (KIBs) are promising candidates for large-scale energy storage devices due to their high energy density and low cost. However, the large potassium-ion radius leads to its sluggish diffusion kinetics during intercalation into the lattice of the electrode material, resulting in electrode pulverization and poor cycle stability. Herein, vanadium trioxide anodes with different oxygen vacancy concentrations (V2O2.9, V2O2.8, and V2O2.7 determined by the neutron diffraction) are developed for KIBs. The V2O2.8 anode is optimal and exhibits excellent potassium storage performance due to the realization of expanded interlayer spacing and efficient ion/electron transport. In situ X-ray diffraction indicates that V2O2.8 is a zero-strain anode with a volumetric strain of 0.28% during the charge/discharge process. Density functional theory calculations show that the impacts of oxygen defects are embodied in reducing the band gap, increasing electron transfer ability, and lowering the diffusion energy barriers for potassium ions. As a result, the electrode of nanosized V2O2.8 embedded in porous reticular carbon (V2O2.8@PRC) delivers high reversible capacity (362 mAh g-1 at 0.05 A g-1), ultralong cycling stability (98.8% capacity retention after 3000 cycles at 2 A g-1), and superior pouch-type full-cell performance (221 mAh g-1 at 0.05 A g-1). This work presents an oxygen defect engineering strategy for ultrastable KIBs.
RESUMEN
Low electronic conductivity and poor properties at high rate have hindered the application of Na3V2(PO4)3 (NVP). Herein, a facile synthesis of NVP with porous carbon skeleton is proposed. Specifically, Na2CO3 and glucose, acting as hard templates, are introduced to the precursors after initial firing stage, and Na2CO3 particles are removed by flushing after the final heatment. Due to the thermal conductivity of Na2CO3, the secondary addition of glucose can generate distinctive graphitized porous carbon skeleton, which bonds well with the amorphous carbon coating to construct stable and conductive network. The porous construction can alleviate the stress and strain caused by the current impact through deformation. Furthermore, ex-situ EIS reveals the highly conductive carbon skeleton can significantly reduce the surface resistance and result in an increase of effective voltage to promote the de-intercalation of Na+. Moreover, the ex-situ X-ray photoelectron spectroscopy (XPS) at different potentials confirms the stabilized existence of VOC bonds. Benefiting from the unique carbon skeleton, the PC-NVP releases capacity of 116.9 mAh g-1 at 0.1C. Even at 120C, PC-NVP still exhibits a high capacity of 84.7 mAh g-1, retaining a value of 41.3 mAh g-1 after 16,000 cycles, corresponding to a low decay rate of 0.0032% per cycle.
RESUMEN
LiBH4 is a promising solid-state electrolyte (SE) due to its thermodynamic stability to Li. However, poor Li-ion conductivities at room temperature, low oxidative stabilities, and severe dendrite growth hamper its application. In this work, a partial dehydrogenation strategy is adopted to in situ generate an electronic blocking layer dispersed of LiH, addressing the above three issues simultaneously. The electrically insulated LiH reduces the electronic conductivity by two orders of magnitude, leading to a 32.0-times higher critical electrical bias for dendrite growth on the particle surfaces than that of the counterpart. Additionally, this layer not only promotes the Li-ion conductance by stimulating coordinated rotations of BH4 - and B12 H12 2- , contributing to a Li-ion conductivity of 1.38 × 10-3 S cm-1 at 25 °C, but also greatly enhances oxidation stability by localizing the electron density on BH4 - , extending its voltage window to 6.0 V. Consequently, this electrolyte exhibits an unprecedented critical current density (CCD) of 15.12 mA cm-2 at 25 °C, long-term Li plating and stripping stability for 2700 h, and a wide temperature window for dendrite inhibition from -30 to 150 °C. Its Li-LiCoO2 cell displays high reversibility within 3.0-5.0 V. It is believed that this work provides a clear direction for solid-state hydride electrolytes.
RESUMEN
Tin sulfide (SnS) is an attractive anode for sodium ion batteries (NIBs) because of its high theoretical capacity, while it seriously suffers from the inherently poor conductivity and huge volume variation during the cycling process, leading to inferior lifespan. To intrinsically maximize the sodium storage of SnS, herein, lithium azides (LiN3 )-induced SnS quantum dots (QDs) are first reported using a simple electrospinning strategy, where SnS QDs are uniformly distributed in the carbon fibers. Taking the advantage of LiN3 , which can effectively prevent the growth of crystal nuclei during the thermal treatment, the well-dispersed SnS QDs performs superior Na+ transfer kinetics and pseudocapacitive when used as an anode material for NIBs. The 3D SnS quantum dots embedded uniformly in N-doped nanofibers (SnS QDs@NCF) electrodes display superior long cycling life-span (484.6 mAh g-1 after 5800 cycles at 2 A g-1 and 430.9 mAh g-1 after 7880 cycles at 10 A g-1 ), as well as excellent rate capability (422.3 mAh g-1 at 20 A g-1 ). This fabrication of transition metal sulfides QDs composites provide a feasible strategy to develop NIBs with long life-span and superior rate capability to pave its practical implementation.