Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Clin Invest ; 129(2): 569-582, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30511964

RESUMEN

Prostate cancer (PC) progressed to castration resistance (CRPC) is a fatal disease. CRPC tumors develop resistance to new-generation antiandrogen enzalutamide through lineage plasticity, characterized by epithelial-mesenchymal transition (EMT) and a basal-like phenotype. FOXA1 is a transcription factor essential for epithelial lineage differentiation. Here, we demonstrate that FOXA1 loss leads to remarkable upregulation of transforming growth factor beta 3 (TGFB3), which encodes a ligand of the TGF-ß pathway. Mechanistically, this is due to genomic occupancy of FOXA1 on an upstream enhancer of the TGFB3 gene to directly inhibit its transcription. Functionally, FOXA1 downregulation induces TGF-ß signaling, EMT, and cell motility, which is effectively blocked by the TGF-ß receptor I inhibitor galunisertib (LY2157299). Tissue microarray analysis confirmed reduced levels of FOXA1 protein and a concordant increase in TGF-ß signaling, indicated by SMAD2 phosphorylation, in CRPC as compared with primary tumors. Importantly, combinatorial LY2157299 treatment sensitized PC cells to enzalutamide, leading to synergistic effects in inhibiting cell invasion in vitro and xenograft CRPC tumor growth and metastasis in vivo. Therefore, our study establishes FOXA1 as an important regulator of lineage plasticity mediated in part by TGF-ß signaling, and supports a novel therapeutic strategy to control lineage switching and potentially extend clinical response to antiandrogen therapies.


Asunto(s)
Factor Nuclear 3-alfa del Hepatocito , Proteínas de Neoplasias , Neoplasias de la Próstata Resistentes a la Castración , Pirazoles/farmacología , Quinolinas/farmacología , Transducción de Señal , Factor de Crecimiento Transformador beta3 , Animales , Línea Celular Tumoral , Perfilación de la Expresión Génica , Factor Nuclear 3-alfa del Hepatocito/antagonistas & inhibidores , Factor Nuclear 3-alfa del Hepatocito/genética , Factor Nuclear 3-alfa del Hepatocito/metabolismo , Humanos , Masculino , Ratones , Ratones SCID , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/patología , Receptor Tipo I de Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Receptor Tipo I de Factor de Crecimiento Transformador beta/genética , Receptor Tipo I de Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta3/genética , Factor de Crecimiento Transformador beta3/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Cancer Res ; 77(2): 412-422, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-27815387

RESUMEN

The lethal phenotype of castration-resistant prostate cancer (CRPC) is generally caused by augmented signaling from the androgen receptor (AR). Here, we report that the AR-repressed gene CCN3/NOV inhibits AR signaling and acts in a negative feedback loop to block AR function. Mechanistically, a cytoplasmic form of CCN3 interacted with the AR N-terminal domain to sequester AR in the cytoplasm of prostate cancer cells, thereby reducing AR transcriptional activity and inhibiting cell growth. However, constitutive repression of CCN3 by the Polycomb group protein EZH2 disrupted this negative feedback loop in both CRPC and enzalutamide-resistant prostate cancer cells. Notably, restoring CCN3 was sufficient to effectively reduce CPRC cell proliferation in vitro and to abolish xenograft tumor growth in vivo Taken together, our findings establish CCN3 as a pivotal regulator of AR signaling and prostate cancer progression and suggest a functional intersection between Polycomb and AR signaling in CRPC. Cancer Res; 77(2); 412-22. ©2016 AACR.


Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Proteína Hiperexpresada del Nefroblastoma/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/patología , Receptores Androgénicos/metabolismo , Animales , Western Blotting , Línea Celular Tumoral , Inmunoprecipitación de Cromatina , Retroalimentación Fisiológica/fisiología , Xenoinjertos , Humanos , Inmunoprecipitación , Masculino , Ratones , Reacción en Cadena de la Polimerasa , Neoplasias de la Próstata Resistentes a la Castración/metabolismo
3.
Nucleic Acids Res ; 44(17): 8153-64, 2016 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-27257062

RESUMEN

Forkhead box A1 (FOXA1) is an FKHD family protein that plays pioneering roles in lineage-specific enhancer activation and gene transcription. Through genome-wide location analyses, here we show that FOXA1 expression and occupancy are, in turn, required for the maintenance of these epigenetic signatures, namely DNA hypomethylation and histone 3 lysine 4 methylation. Mechanistically, this involves TET1, a 5-methylcytosine dioxygenase. We found that FOXA1 induces TET1 expression via direct binding to its cis-regulatory elements. Further, FOXA1 physically interacts with the TET1 protein through its CXXC domain. TET1 thus co-occupies FOXA1-dependent enhancers and mediates local DNA demethylation and concomitant histone 3 lysine 4 methylation, further potentiating FOXA1 recruitment. Consequently, FOXA1 binding events are markedly reduced following TET1 depletion. Together, our results suggest that FOXA1 is not only able to recognize but also remodel the epigenetic signatures at lineage-specific enhancers, which is mediated, at least in part, by a feed-forward regulatory loop between FOXA1 and TET1.


Asunto(s)
Linaje de la Célula/genética , Elementos de Facilitación Genéticos , Factor Nuclear 3-alfa del Hepatocito/metabolismo , Oxigenasas de Función Mixta/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Línea Celular Tumoral , Epigénesis Genética , Células HEK293 , Factor Nuclear 3-alfa del Hepatocito/genética , Humanos , Oxigenasas de Función Mixta/genética , Modelos Biológicos , Unión Proteica/genética , Proteínas Proto-Oncogénicas/genética , Transcripción Genética
4.
Biol Psychiatry ; 77(3): 246-255, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25108803

RESUMEN

BACKGROUND: Major depressive disorder (MDD) exhibits numerous clinical and molecular features that are consistent with putative epigenetic misregulation. Despite growing interest in epigenetic studies of psychiatric diseases, the methodologies guiding such studies have not been well defined. METHODS: We performed DNA modification analysis in white blood cells from monozygotic twins discordant for MDD, in brain prefrontal cortex, and germline (sperm) samples from affected individuals and control subjects (total N = 304) using 8.1K CpG island microarrays and fine mapping. In addition to the traditional locus-by-locus comparisons, we explored the potential of new analytical approaches in epigenomic studies. RESULTS: In the microarray experiment, we detected a number of nominally significant DNA modification differences in MDD and validated selected targets using bisulfite pyrosequencing. Some MDD epigenetic changes, however, overlapped across brain, blood, and sperm more often than expected by chance. We also demonstrated that stratification for disease severity and age may increase the statistical power of epimutation detection. Finally, a series of new analytical approaches, such as DNA modification networks and machine-learning algorithms using binary and quantitative depression phenotypes, provided additional insights on the epigenetic contributions to MDD. CONCLUSIONS: Mapping epigenetic differences in MDD (and other psychiatric diseases) is a complex task. However, combining traditional and innovative analytical strategies may lead to identification of disease-specific etiopathogenic epimutations.


Asunto(s)
Trastorno Depresivo Mayor/genética , Epigénesis Genética , Adolescente , Adulto , Anciano , Islas de CpG , Femenino , Humanos , Leucocitos , Masculino , Análisis por Micromatrices , Persona de Mediana Edad , Corteza Prefrontal , Espermatozoides , Gemelos Monocigóticos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...