Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Phys Chem Lett ; 13(15): 3377-3381, 2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35404057

RESUMEN

ß-Ga2O3 is considered an attractive candidate for next-generation high-power electronics due to its large band gap of 4.9 eV and high breakdown electrical field of 8 MV/cm. However, the relatively low carrier concentration and low electron mobility in the ß-Ga2O3-based device limit its application. Herein, the high-quality ß-Ga2O3 single crystal with high doping concentration of ∼3.2 × 1019 cm-3 was realized using an optical float-zone method through Ta doping. In contrast to the SiO2/ß-Ga2O3 gate stack structure, we used hexagonal boron nitride as the gate insulator, which is sufficient to suppress the metal-insulator-semiconductor (MIS) interface defects of the ß-Ga2O3-based MIS field-effect transistors (FETs), exhibiting outstanding performances with a low specific on-resistance of ∼6.3 mΩ·cm2, a high current on/off ratio of ∼108, and a high mobility of ∼91.0 cm2/(V s). Our findings offer a unique perspective to fabricate high-performance ß-Ga2O3 FETs for next-generation high-power nanoelectronic applications.

2.
ACS Appl Mater Interfaces ; 13(22): 26170-26179, 2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34039003

RESUMEN

In light-emitting diodes (LEDs), balanced electron and hole transport is of particular importance to achieve high rates of radiative recombination. Most quantum dot (QD)-based LEDs, however, employ infinitesimal core-shell QDs which inherently have different electron and hole mobilities. As QDs are the core building blocks of QD-LEDs, the inherent mobility difference in the core-shell QDs causes significantly unbalanced charge carrier transport, resulting in detrimental effects on performances of QD-LEDs. Herein, we introduce a post-chemical treatment to reconstruct the QD films through the solvent-mediated self-organization process. The treatment using various poly-alkyl alcohol groups enables QD ensembles to transform from disordered solid dispersion into an ordered superlattice and effectively modulate electron and hole mobilities, which leads to the balanced charge carrier transport. In particular, ethanol-treated QD films exhibit enhanced charge carrier lifetime and reduced hysteresis due to the balanced charge carrier transport, which is attributed to the preferential-facet-oriented QD post-organization. As a result, 63, 78, and 54% enhancements in the external quantum efficiency were observed in red, green, and blue QD-LEDs, respectively. These results are of fundamental importance to understand both solvent-mediated QD film reconstruction and the effect of balanced electron and hole transport in QD-LEDs.

3.
Adv Mater ; 32(38): e2003422, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33480464

RESUMEN

The rapid development of Internet of Things mobile terminals has accelerated the market's demand for portable mobile power supplies and flexible wearable devices. Here, an embedded metal-mesh transparent conductive electrode (TCE) is prepared on poly(ethylene terephthalate) (PET) using a novel selective electrodeposition process combined with inverted film-processing methods. This embedded nickel (Ni)-mesh flexible TCE shows excellent photoelectric performance (sheet resistance of ≈0.2-0.5 Ω sq-1 at high transmittance of ≈85-87%) and mechanical durability. The PET/Ni-mesh/polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS PH1000) hybrid electrode is used as a transparent electrode for perovskite solar cells (PSCs), which exhibit excellent electric properties and remarkable environmental and mechanical stability. A power conversion efficiency of 17.3% is obtained, which is the highest efficiency for a PSC based on flexible transparent metal electrodes to date. For perovskite crystals that require harsh growth conditions, their mechanical stability and environmental stability on flexible transparent embedded metal substrates are studied and improved. The resulting flexible device retains 76% of the original efficiency after 2000 bending cycles. The results of this work provide a step improvement in flexible PSCs.

4.
Adv Mater ; 31(25): e1901519, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31069886

RESUMEN

Halide perovskite films processed from solution at low-temperature offer promising opportunities to make flexible solar cells. However, the brittleness of perovskite films is an issue for mechanical stability in flexible devices. Herein, photo-crosslinked [6,6]-phenylC61 -butyric oxetane dendron ester (C-PCBOD) is used to improve the mechanical stability of methylammonium lead iodide (MAPbI3 ) perovskite films. Also, it is demonstrated that C-PCBOD passivates the grain boundaries, which reduces the formation of trap states and enhances the environmental stability of MAPbI3 . Thus, MAPbI3 perovskite solar cells are prepared on solid and flexible substrates with record efficiencies of 20.4% and 18.1%, respectively, which are among the highest ever reported for MAPbI3 on both flexible and solid substrates. The result of this work provides a step improvement toward stable and efficient flexible perovskite solar cells.

5.
Adv Mater ; 30(20): e1800258, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29603445

RESUMEN

Exploiting organic/inorganic hybrid perovskite solar cells (PSCs) with reduced Pb content is very important for developing environment-friendly photovoltaics. Utilizing of Pb-Sn alloying perovskite is considered as an efficient route to reduce the risk of ecosystem pollution. However, the trade-off between device performance and Sn substitution ratio due to the instability of Sn2+ is a current dilemma. Here, for the first time, the highly efficient Pb-Sn-Cu ternary PSCs are reported by partial replacing of PbI2 with SnI2 and CuBr2 . Sn2+ substitution results in a redshift of the absorption onset, whereas worsens the film quality. Interestingly, Cu2+ introduction can passivate the trap sites at the crystal boundaries of Pb-Sn perovskites effectively. Consequently, a power conversion efficiency as high as 21.08% in inverted planar Pb-Sn-Cu ternary PSCs is approached. The finding opens a new route toward the fabrication of high efficiency Pb-Sn alloying perovskite solar cells by Cu2+ passivation.

6.
ACS Appl Mater Interfaces ; 9(15): 13240-13246, 2017 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-28332402

RESUMEN

Effective and stable hole-transporting materials (HTMs) are necessary for obtaining excellent planar perovskite solar cells (PSCs). Herein, we reported a solution-processed composite HTM consisting of a polymer poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) and a small-molecule copper phthalocyanine-3,4',4″,4‴-tetrasulfonated acid tetrasodium salt (TS-CuPc) with optimized doping ratios. The composite HTM is crucial for not only enhancing the hole transport and extraction but also improving the perovskite crystallization. In addition, the composite HTM can weaken the indium tin oxide erosion by reducing the acidity and increasing the dispersibility of the PEDOT:PSS aqueous dispersion via incorporating suitable TS-CuPc. Consequently, a highly efficient device was fabricated with a power conversion efficiency (PCE) of 17.29%. Its short-circuit current (JSC) is 22.23 mA/cm2, and its open-circuit voltage (VOC) is 1.01 V. Meanwhile, it exhibited a higher fill factor (FF) of 77% and improved cell stability. The developed composite HTM provides a good potential anode interfacial layer for fabricating outstanding PSCs.

7.
Adv Mater ; 28(31): 6767, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27511533

RESUMEN

On page 6695, X. Y. Gao, L.-S. Liao, and co-workers describe the fabrication of mixed Pb-In perovskite solar cells, using indium (III) chloride and lead (II) chloride with methylammonium iodide. A maximum power conversion efficiency as high as 17.55% is achieved owing to the high quality of the perovskites with multiple ordered crystal orientations. This work demonstrates the possibility of substituting the Pb (II) by using In (III), which opens a broad route to fabricating alloy perovskite solar cells with mitigated ecological impact.

8.
Adv Mater ; 28(31): 6695-703, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27184107

RESUMEN

Mixed Pb-In perovskite solar cells are fabricated by using lead(II) chloride and indium(III) chloride with methylammonium iodide. A maximum power conversion efficiency as high as 17.55% is achieved owing to the high quality of perovskites with multiple ordered crystal orientations.

9.
Zhongguo Gu Shang ; 28(6): 491-5, 2015 Jun.
Artículo en Chino | MEDLINE | ID: mdl-26255469

RESUMEN

OBJECTIVE: To explore causes of shoulder pain and propose prevention measures in treating acromioclavicular joint dislocation. METHODS: From January 2005 to January 2013, 86 patients with acromioclavicular joint dislocation (Tossy III) were treated with hook plate fixation, and were divided into two groups. Bsaed on recovery of shoulder function mostly, the patients who suffered from rest pain, motion pain were named as shoulder pain group, while the patients without pain were named as painless group. In shoulder pain group, there were 21 cases including 15 males and and 6 females ranging the age from 22 to 62 years old with an average of (40.6±11.2) years old. There were 8 cases were on the left side and 13 cases were on the right side. In painless group, there were 65 cases including 36 males and and 29 females ranging the age from 19 to 65 years old with an average of (40.0±11.3) years old. There were 33 cases were on the left side and 32 cases were on the right side. The time from injury to operation ranged from 3 h to 8 d with an average of 34.6 h. Shoulder function of all patients were normal before injuried. Postoperative pain, activity of daily living (ADL), range of motion, deltoid muscle strength were compared. Anteflexion,rear protraction, abduction and upthrow of shoulder joint were also compared. Postoperative complications between two groups were observed and compared. RESULTS: All patients were followed up from 12 to 48 months with an average of 18.5 months. Constant-Murley score were used to evaluate clinical efficacy at the least following up, and 13 cases got an excellent results, 5 moderate, 2 good and 1 poor in shoulder pain group ; while 61 cases were obtained excellent results, 3 moderate and 1 good in painless group. There were significantly differences between two groups in Constant-Murley score and activity of shoulder joint (P<0.05). In shoulder pain group, 3 cases were disconnected, 1 case occurred stress fracture, 9 cases were subacromial impingement syndrome, 5 cases occurred subluxation, 1 case occurred plate breakage and 11 cases were acromioclavicular arthritis. CONCLUSION: Chosing individual clavicular hook plate, fulfilling anatomic reset, paying attention to the repair of articular capsule ligament, and reducing hook and bone antagonism between stress is the key point of preventing and decreasing postoperative shoulder pain.


Asunto(s)
Articulación Acromioclavicular/cirugía , Placas Óseas/efectos adversos , Fijación Interna de Fracturas , Complicaciones Posoperatorias/etiología , Luxación del Hombro/cirugía , Dolor de Hombro/etiología , Articulación Acromioclavicular/lesiones , Articulación Acromioclavicular/fisiopatología , Adulto , Estudios de Casos y Controles , Femenino , Fijación Interna de Fracturas/instrumentación , Fijación Interna de Fracturas/métodos , Humanos , Masculino , Persona de Mediana Edad , Rango del Movimiento Articular , Luxación del Hombro/complicaciones , Luxación del Hombro/fisiopatología , Resultado del Tratamiento , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...