Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Magn Reson Imaging ; 109: 158-164, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38520943

RESUMEN

INTRODUCTION: Idiopathic rapid eye movement sleep behavior disorder (iRBD) and Parkinson's disease (PD) have been found to have changes in cerebral perfusion and overlap of some of the lesioned brain areas. However, a consensus regarding the specific location and diagnostic significance of these cerebral blood perfusion alternations remains elusive in both iRBD and PD. The present study evaluated the patterns of cerebral blood flow changes in iRBD and PD. MATERIAL AND METHODS: A total of 59 right-handed subjects were enrolled, including 15 patients with iRBD, 20 patients with PD, and 24 healthy controls (HC). They were randomly divided into groups at a ratio of 4 to 1 for training and testing. A PASL sequence was employed to obtain quantitative cerebral blood flow (CBF) maps. The CBF values were calculated from these acquired maps. In addition, AutoGluon was employed to construct a classifier for CBF features selection and classification. An independent t-test was performed for CBF variations, with age and sex as nuisance variables. The performance of the feature was evaluated using receiver operating characteristic (ROC) curves. A significance level of P < 0.05 was considered significant. CBF in several brain regions, including the left median cingulate and paracingulate gyri and the right middle occipital gyrus (MOG), showed significant differences between PD and HC, demonstrating good classification performance. The combined model that integrates all features achieved even higher performance with an AUC of 0.9380. Additionally, CBF values in multiple brain regions, including the right MOG and the left angular gyrus, displayed significant differences between PD and iRBD. Particularly, CBF values in the left angular gyrus exhibited good performance in classifying PD and iRBD. The combined model achieved improved performance, with an AUC of 0.8533. No significant differences were found in brain regions when comparing CBF values between iRBD and HC subjects. CONCLUSIONS: ASL-based quantitative CBF change features can offer reliable biomarkers to assist in the diagnosis of PD. Regarding the characteristic of CBF in the right MOG, it is anticipated to serve as an imaging biomarker for predicting the progression of iRBD to PD.


Asunto(s)
Enfermedad de Parkinson , Trastorno de la Conducta del Sueño REM , Humanos , Trastorno de la Conducta del Sueño REM/diagnóstico por imagen , Enfermedad de Parkinson/diagnóstico por imagen , Marcadores de Spin , Circulación Cerebrovascular , Arterias
2.
FASEB J ; 32(6): 3096-3107, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29401606

RESUMEN

Emerging evidence suggests that cysteine-rich protein 61 (CYR61) plays a role in the differentiation and development of chondrocytes, osteoblasts, and osteoclasts; however, little is known about its role in adipogenesis. The current study indicates that the expression level of Cyr61 was altered in primary cultured marrow stromal cells and the established mesenchymal cell line, C3H10T1/2, after adipogenic treatment. Overexpressing Cyr61 repressed C3H10T1/2 and primary marrow stromal cells to differentiate into mature adipocytes. Conversely, inhibition of endogenous Cyr61 induced C3H10T1/2 and primary marrow stromal cells to fully differentiate. Mechanism investigations reveal that knockdown of Cyr61 inhibited the nuclear translocation of ß-catenin and decreased nuclear protein levels of ß-catenin and transcription factor 7-like 2. Moreover, the silencing of Cyr61 increased protein levels of phosphorylated ribosomal protein S6 kinase B1, mammalian target of rapamycin, eukaryotic translation initiation factor 4E-binding protein 1, and ribosomal protein S6-the major components of mammalian target of rapamycin complex 1 (mTORC1) signaling-in C3H10T1/2 cells. Additional investigations demonstrated that treatment with rapamycin significantly attenuated adipocyte formation that was induced by Cyr61 small interfering RNA (siRNA) transfection. Moreover, Cyr61 siRNA also lost its ability to stimulate adipocyte formation under the background of ß-catenin overexpression. Taken together, our study provides evidence that CYR61 regulates adipocyte differentiation via multiple signaling pathways that involve at least the inactivation of mTORC1 signaling and the activation of canonical Wnt signaling.-Yang, Y., Qi, Q., Wang, Y., Shi, Y., Yang, W., Cen, Y., Zhu, E., Li, X., Chen, D., Wang, B. Cysteine-rich protein 61 regulates adipocyte differentiation from mesenchymal stem cells through mammalian target of rapamycin complex 1 and canonical Wnt signaling.


Asunto(s)
Adipocitos/metabolismo , Diferenciación Celular , Proteína 61 Rica en Cisteína/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Células Madre Mesenquimatosas/metabolismo , Vía de Señalización Wnt , Adipocitos/citología , Animales , Células Cultivadas , Proteína 61 Rica en Cisteína/genética , Factor 4E Eucariótico de Iniciación/genética , Factor 4E Eucariótico de Iniciación/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Células Madre Mesenquimatosas/citología , Ratones , Proteínas Quinasas S6 Ribosómicas 70-kDa/genética , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo
3.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 24(4): 910-3, 2007 Aug.
Artículo en Chino | MEDLINE | ID: mdl-17899772

RESUMEN

Trans-cranial magnetic stimulation (TMS) is the process that excitable human brain tissue is activated with the electric field induced from a changing magnetic field. Magnetic focusing characteristic is one of the most important technical considerations of coil design in TMS. In this paper, a half solenoid coil was proposed to be used in TMS and the magnitude profile of the induced electric fields in different depth was studied based on the induced electric field theory of magnetic stimulating coil. The magnitude profile of the induced electric fields produced by half solenoid coils was compared with that of butterfly-shaped coils. The result shows that half solenoid coils retain the good focusing characteristics of the main lobe of the butterfly-shaped coils. At the same time side effect of the side lobes on notargeted tissue is mitigated, which would otherwise lead to undesirable stimulation. Hence magnetic focusing is optimized, which is expected to give a more accurate delivery of the focal point for more effective stimulation.


Asunto(s)
Campos Electromagnéticos , Estimulación Magnética Transcraneal/instrumentación , Encéfalo/fisiología , Diseño de Equipo , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...