Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mikrochim Acta ; 191(3): 170, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38427110

RESUMEN

Gold nanostructures and a Nafion modified screen-printed carbon electrode (Nafion/AuNS/SPCE) were developed to assess the cell viability of Parkinson's disease (PD) cell models. The electrochemical measurement of cell viability was reflected by catecholamine neurotransmitter (represented by dopamine) secretion capacity, followed by a traditional tetrazolium-based colorimetric assay for confirmation. Due to the  capacity to synthesize, store, and release catecholamines as well as their unlimited homogeneous proliferation, and ease of manipulation, pheochromocytoma (PC12) cells were used for PD cell modeling. Commercial low-differentiated and highly-differentiated PC12 cells, and home-made nerve growth factor (NGF) induced low-differentiated PC12 cells (NGF-differentiated PC12 cells) were included in the modeling. This approach achieved sensitive and rapid determination of cellular modeling and intervention states. Notably, among the three cell lines, NGF-differentiated PC12 cells displayed the enhanced neurotransmitter secretion level accompanied with attenuated growth rate, incremental dendrites in number and length that were highly resemble with neurons. Therefore, it was selected as the PD-tailorable modeling cell line. In short, the electrochemical sensor can be used to sensitively determine the biological function of neuron-like PC12 cells with negligible destruction and to explore the protective and regenerative impact of various substances on nerve cell model.


Asunto(s)
Neoplasias de las Glándulas Suprarrenales , Polímeros de Fluorocarbono , Enfermedad de Parkinson , Ratas , Animales , Catecolaminas/metabolismo , Células PC12 , Factor de Crecimiento Nervioso , Evaluación Preclínica de Medicamentos , Neurotransmisores
2.
Talanta ; 265: 124881, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37390672

RESUMEN

Cell viability is essential for predicting drug toxicity and assessing drug effects in drug screening. However, the over/underestimation of cell viability measured by traditional tetrazolium colorimetric assays is inevitable in cell-based experiments. Hydrogen peroxide (H2O2) secreted by living cells may provide more comprehensive information about the cell state. Hence, it is significant to develop a simple and rapid approach for evaluating cell viability by measuring the excreted H2O2. In this work, we developed a dual-readout sensing platform based on optical and digital signals by integrating a light emitting diode (LED) and a light dependent resistor (LDR) into a closed split bipolar electrode (BPE), denoted as BP-LED-E-LDR, for evaluating cell viability by measuring the H2O2 secreted from living cells in drug screening. Additionally, the customized three-dimensional (3D) printed components were designed to adjust the distance and angle between the LED and LDR, achieving stable, reliable and highly efficient signal transformation. It only took 2 min to obtain response results. For measuring the exocytosis H2O2 from living cells, we observed a good linear relationship between the visual/digital signal and logarithmic function of MCF-7 cell counts. Furthermore, the fitted half inhibitory concentration curve of MCF-7 to doxorubicin hydrochloride obtained by the BP-LED-E-LDR device revealed a nearly identical tendency with the cell counting kit-8 assay, providing an attainable, reusable, and robust analytical strategy for evaluating cell viability in drug toxicology research.


Asunto(s)
Técnicas Biosensibles , Peróxido de Hidrógeno , Humanos , Supervivencia Celular , Recuento de Células , Electrodos , Células MCF-7 , Técnicas Biosensibles/métodos
3.
Mikrochim Acta ; 187(9): 499, 2020 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-32803409

RESUMEN

A neotype electrochemical sensor based on a three-dimensional nanoporous gold (3D-NPG) electrode decorated with ultra-thin platinum nanoparticles (Pt NPs) was fabricated for high-performance electrocatalysis and sensitive determination of hydrogen peroxide (H2O2) released from pheochromocytoma (PC12) cells. The monodisperse Pt-Au bimetallic nanoporous (Pt-Au-BNP) electrode prepared by cyclic voltammetry electrodepositing monolayer Pt NPs on the surface of the 3D-NPG electrode was characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and energy-dispersive spectroscopy (EDS). Amperometric response for H2O2 measurement was chosen at an applied potential of - 0.4 V. Upon optimal conditions, the wide linear range for the amperometric determination of H2O2 was from 0.05 µM to 7.37 mM, with a limit of detection (S/N = 3) of 1.5 × 10-8 mol/L and a high sensitivity of 1.125 µA µM-1 cm-2, certifying the large electrocatalytic action of the Pt-Au-BNP electrode. The proposed sensor has been successfully applied to the dynamic determination of H2O2 released from PC12 cells (from which the H2O2 generated by each cell was about 52.5 amol) with negligible interference. Thus, the proposed new electrochemical sensor displays potential applications for the dynamic, real-time monitoring of key small molecules secreted by living cells, further deepening the understanding of cell behavior stimulated by foreign materials. Graphical Abstract .


Asunto(s)
Técnicas Electroquímicas/métodos , Oro/química , Peróxido de Hidrógeno/análisis , Nanopartículas del Metal/química , Platino (Metal)/química , Animales , Técnicas Electroquímicas/instrumentación , Electrodos , Peróxido de Hidrógeno/química , Límite de Detección , Nanoporos , Oxidación-Reducción , Células PC12 , Ratas
4.
Sensors (Basel) ; 17(11)2017 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-29149054

RESUMEN

This paper presents a novel design method in which a dual-polymer fiber Fizeau interferometer (DPFFI) is proposed for simultaneously measuring relative humidity (RH) and temperature (T). Since the polymer is intrinsically highly sensitive to both RH and T, the polymer fiber Fizeau interferometer (PFFI) exhibits cross-sensitivity of RH and T. In general, it is difficult to demodulate the optical responses from both variations of RH and T using a single PFFI. If two PFFIs with different structures are combined, they will individually exhibit distinct sensitivity responses with respect to RH and T, respectively. The technical problem of analyzing multiple interferences of the optical spectra of the DPFFI and the individual sensitivity of RH and T to each PFFI is obtained using the fast Fourier transform (FFT). A mathematical method is applied to solve the simultaneous equations of the DPFFI, so that the two variables RH and T can be determined at the same time. Experimental results, indicating good sensitivity and accuracy, with small measurement errors (average errors of ~1.46 °C and ~1.48%, respectively), are shown, determining the feasibility, and verifying the effectiveness, of the proposed DPFFI sensor.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...