Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Small ; : e2402037, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38511536

RESUMEN

Enhancing the low-potential capacity of anode materials is significant in boosting the operating voltage of full-cells and constructing high energy-density energy storage devices. Graphitic carbons exhibit outstanding low-potential potassium storage performance, but show a low K+ diffusion kinetics. Herein, in situ defect engineering in graphitic nanocarbon is achieved by an atomic self-activation strategy to boost the accessible low-voltage insertion. Graphitic carbon layers grow on nanoscale-nickel to form the graphitic nanosphere with short-range ordered microcrystalline due to nickel graphitization catalyst. Meanwhile, the widely distributed K+ in the precursor induces the activation of surrounding carbon atoms to in situ generate carbon vacancies as channels. The graphite microcrystals with defect channels realize reversible K+ intercalation at low-potential and accessible ion diffusion kinetics, contributing to high reversible capacity (209 mAh g-1 at 0.05 A g-1 under 0.8 V) and rate capacity (103.2 mAh g-1 at 1 A g-1). The full-cell with Prussian blue cathode and graphitic nanocarbon anode maintains an obvious working platform at ca. 3.0 V. This work provides a strategy for the in situ design of carbon anode materials and gives insights into the potassium storage mechanism at low-potential for high-performance full-cells.

2.
J Transl Med ; 22(1): 153, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38355483

RESUMEN

Skeletal system disease (SSD) is defined as a class of chronic disorders of skeletal system with poor prognosis and causes heavy economic burden. m6A, methylation at the N6 position of adenosine in RNA, is a reversible and dynamic modification in posttranscriptional mRNA. Evidences suggest that m6A modifications play a crucial role in regulating biological processes of all kinds of diseases, such as malignancy. Recently studies have revealed that as the most abundant epigentic modification, m6A is involved in the progression of SSD. However, the function of m6A modification in SSD is not fully illustrated. Therefore, make clear the relationship between m6A modification and SSD pathogenesis might provide novel sights for prevention and targeted treatment of SSD. This article will summarize the recent advances of m6A regulation in the biological processes of SSD, including osteoporosis, osteosarcoma, rheumatoid arthritis and osteoarthritis, and discuss the potential clinical value, research challenge and future prospect of m6A modification in SSD.


Asunto(s)
Adenina/análogos & derivados , Neoplasias Óseas , Osteoartritis , Humanos , ARN , Osteoartritis/genética , Metilación
3.
bioRxiv ; 2023 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-37790498

RESUMEN

KRAS G12C inhibitor (G12Ci) has produced encouraging, albeit modest and transient, clinical benefit in pancreatic ductal adenocarcinoma (PDAC). Identifying and targeting resistance mechanisms to G12Ci treatment is therefore crucial. To better understand the tumor biology of the KRAS G12C allele and possible bypass mechanisms, we developed a novel autochthonous KRAS G12C -driven PDAC model. Compared to the classical KRAS G12D PDAC model, the G12C model exhibit slower tumor growth, yet similar histopathological and molecular features. Aligned with clinical experience, G12Ci treatment of KRAS G12C tumors produced modest impact despite stimulating a 'hot' tumor immune microenvironment. Immunoprofiling revealed that CD24, a 'do-not-eat-me' signal, is significantly upregulated on cancer cells upon G12Ci treatment. Blocking CD24 enhanced macrophage phagocytosis of cancer cells and significantly sensitized tumors to G12Ci treatment. Similar findings were observed in KRAS G12D -driven PDAC. Our study reveals common and distinct oncogenic KRAS allele-specific biology and identifies a clinically actionable adaptive mechanism that may improve the efficacy of oncogenic KRAS inhibitor therapy in PDAC. Significance: Lack of faithful preclinical models limits the exploration of resistance mechanisms to KRAS G12C inhibitor in PDAC. We generated an autochthonous KRAS G12C -driven PDAC model, which revealed allele-specific biology of the KRAS G12C during PDAC development. We identified CD24 as an actionable adaptive mechanisms in cancer cells induced upon KRAS G12C inhibition and blocking CD24 sensitizes PDAC to KRAS inhibitors in preclinical models.

4.
Zhongguo Gu Shang ; 36(5): 414-9, 2023 May 25.
Artículo en Chino | MEDLINE | ID: mdl-37211931

RESUMEN

OBJECTIVE: To compare the short-term clinical efficacy and radiologic differences between oblique lateral interbody fusion(OLIF) and minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF) for degenerative lumbar spondylolisthesis. METHODS: A retrospective analysis was performed on 58 patients with lumbar spondylolisthesis treated with OLIF or MIS-TLIF from April 2019 to October 2020. Among them, 28 patients were treated with OLIF (OLIF group), including 15 males and 13 females aged 47 to 84 years old with an average age of (63.00±9.38) years. The other 30 patients were treated with MIS-TLIF(MIS-TLIF group), including 17 males and 13 females aged 43 to 78 years old with an average age of (61.13±11.10) years. General conditions, including operation time, intraoperative blood loss, postoperative drainage, complications, lying in bed, and hospitalization time were recorded in both groups. Radiological characteristics, including intervertebral disc height (DH), intervertebral foramen height (FH), and lumbar lordosis angle (LLA), were compared between two groups. The visual analogue scale (VAS) and Oswestry disability index (ODI) were used to evaluate the clinical effect. RESULTS: The operation time, intraoperative blood loss, postoperative drainage, lying in bed, and hospitalization time in OLIF group were significantly less than those in the MIS-TLIF group (P<0.05). The intervertebral disc height and intervertebral foramen height were significantly improved in both groups after the operation (P<0.05). The lumbar lordosis angle in OLIF group was significantly improved compared to before the operation(P<0.05), but there was no significant difference in the MIS-TLIF group before and after operation(P>0.05). Postoperative intervertebral disc height, intervertebral foramen height, and lumbar lordosis were better in the OLIF group than in the MIS-TLIF group (P<0.05). The VAS and ODI of the OLIF group were lower than those of the MIS-TLIF group within 1 week and 1 month after the operation (P<0.05), and there were no significant differences in VAS and ODI at 3 and 6 months after the operation between the two groups(P>0.05). In the OLIF group, 1 case had paresthesia of the left lower extremity with flexion-hip weakness and 1 case had a collapse of the endplate after the operation;in the MIS-TLIF group, 2 cases had radiation pain of lower extremities after decompression. CONCLUSION: Compared with MIS-TLIF, OLIF results in less operative trauma, faster recovery, and better imaging performance after lumbar spine surgery.


Asunto(s)
Lordosis , Fusión Vertebral , Espondilolistesis , Masculino , Femenino , Humanos , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Adulto , Estudios Retrospectivos , Espondilolistesis/diagnóstico por imagen , Espondilolistesis/cirugía , Vértebras Lumbares/diagnóstico por imagen , Vértebras Lumbares/cirugía , Lordosis/cirugía , Procedimientos Quirúrgicos Mínimamente Invasivos/métodos , Fusión Vertebral/métodos , Resultado del Tratamiento , Pérdida de Sangre Quirúrgica , Hemorragia Posoperatoria
5.
Biomed Pharmacother ; 162: 114586, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36989711

RESUMEN

The byproducts of bacterial fermentation known as short-chain fatty acids (SCFAs) are chemically comprised of a carboxylic acid component and a short hydrocarbon chain. Recent investigations have demonstrated that SCFAs can affect intestinal immunity by inducing endogenous host defense peptides (HDPs) and their beneficial effects on barrier integrity, gut health, energy supply, and inflammation. HDPs, which include defensins, cathelicidins, and C-type lectins, perform a significant function in innate immunity in gastrointestinal mucosal membranes. SCFAs have been demonstrated to stimulate HDP synthesis by intestinal epithelial cells via interactions with G protein-coupled receptor 43 (GPR43), activation of the Jun N-terminal kinase (JNK) and Mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) pathways, and the cell growth pathways. Furthermore, SCFA butyrate has been demonstrated to enhance the number of HDPs released from macrophages. SCFAs promote monocyte-to-macrophage development and stimulate HDP synthesis in macrophages by inhibiting histone deacetylase (HDAC). Understanding the etiology of many common disorders might be facilitated by studies into the function of microbial metabolites, such as SCFAs, in the molecular regulatory processes of immune responses (e.g., HDP production). This review will focus on the current knowledge of the role and mechanism of microbiota-derived SCFAs in influencing the synthesis of host-derived peptides, particularly HDPs.


Asunto(s)
Péptidos Catiónicos Antimicrobianos , Microbiota , Humanos , Ácidos Grasos Volátiles/metabolismo , Butiratos , Inflamación/metabolismo
6.
Front Neurosci ; 17: 1126875, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36743804

RESUMEN

Introduction: The dynamic reconfiguration of network oscillations is connected with cognitive processes. Changes in how neural networks and signaling pathways work are crucial to how epilepsy and related conditions develop. Specifically, there is evidence that prolonged or recurrent seizures may induce or exacerbate cognitive impairment. However, it still needs to be determined how the seizure brain configures its functional structure to shape the battle of strong local oscillations vs. slow global oscillations in the network to impair cognitive function. Methods: In this paper, we aim to deduce the network mechanisms underlying seizure-induced cognitive impairment by comparing the evolution of strong local oscillations with slow global oscillations and their link to the resting state of healthy controls. Here, we construct a dynamically efficient network of pathological seizures by calculating the synchrony and directionality of information flow between nine patients' SEEG signals. Then, using a pattern-based method, we found hierarchical modules in the brain's functional network and measured the functional balance between the network's local strong and slow global oscillations. Results and discussion: According to the findings, a tremendous rise in strong local oscillations during seizures and an increase in slow global oscillations after seizures corresponded to the initiation and recovery of cognitive impairment. Specifically, during the interictal period, local strong and slow global oscillations are in metastable balance, which is the same as a normal cognitive process and can be switched easily. During the pre-ictal period, the two show a bimodal pattern of separate peaks that cannot be easily switched, and some flexibility is lost. During the seizure period, a single-peak pattern with negative peaks is showcased, and the network eventually transitions to a very intense strong local oscillation state. These results shed light on the mechanism behind network oscillations in epilepsy-induced cognitive impairment. On the other hand, the differential (similarity) of oscillatory reorganization between the local (non) epileptogenic network and the global network may be an emergency protective mechanism of the brain, preventing the spread of pathological information flow to more healthy brain regions.

7.
Curr Issues Mol Biol ; 44(9): 4087-4099, 2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36135192

RESUMEN

The escalating prevalence of antibiotic-resistant bacteria has led to a serious global public health problem; therefore, there is an urgent need for the development of structurally innovative antibacterial agents. In our study, a series of biphenyl and dibenzofuran derivatives were designed and synthesized by Suzuki-coupling and demethylation reactions in moderate to excellent yields (51-94% yield). Eleven compounds exhibited potent antibacterial activities against the prevalent antibiotic-resistant Gram-positive and Gram-negative pathogens, among which compounds 4'-(trifluoromethyl)-[1,1'-biphenyl]-3,4,5-triol (6i) and 5-(9H-carbazol-2-yl) benzene-1,2,3-triol (6m) showed the most potent inhibitory activities against methicillin-resistant Staphylococcus aureus and multidrug-resistant Enterococcus faecalis with MIC (minimum inhibitory concentration) values as low as 3.13 and 6.25 µg/mL, respectively. Compounds 3',5'-dimethyl-[1,1'-biphenyl]-3,4,4',5-tetraol (6e), 4'-fluoro-[1,1'-biphenyl]-3,4,5-triol (6g), and 4'-(trifluoromethyl)-[1,1'-biphenyl]-3,4,5-triol (6i) showed comparable inhibitory activities with ciprofloxacin to Gram-negative bacterium carbapenems-resistant Acinetobacter baumannii. Study of the structure-activity relationship indicated that a strong electron-withdrawing group on the A ring and hydroxyl groups on the B ring of biphenyls were beneficial to their antibacterial activities, and for benzo-heterocycles, N-heterocycle exhibited optimal antibacterial activity. These results can provide novel structures of antibacterial drugs chemically different from currently known antibiotics and broaden prospects for the development of effective antibiotics against antibiotic-resistant bacteria.

8.
BMC Gastroenterol ; 22(1): 391, 2022 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-35987996

RESUMEN

BACKGROUND: Painless gastrointestinal endoscopy is widely used for the diagnosis and treatment of digestive diseases. At present, propofol is commonly used to perform painless gastrointestinal endoscopy, but the high dose of propofol often leads to a higher incidence of cardiovascular and respiratory complications. Studies have shown that the application of propofol combined with ketamine in painless gastrointestinal endoscopy is beneficial to reduce the dosage of propofol and the incidence of related complications. Esketamine is dextrorotatory structure of ketamine with a twice as great anesthetic effect as normal ketamine but fewer side effects. We hypothesized that esketamine may reduce the consumption of propofol and to investigate the safety of coadministration during gastrointestinal endoscopy. METHODS: A total of 260 patients undergoing painless gastrointestinal endoscopy (gastroscope and colonoscopy) were randomly divided into P group (propofol + saline), PK1 group (propofol + esketamine 0.05 mg/kg), PK2 group (propofol + esketamine 0.1 mg/kg), and PK3 group (propofol + esketamine 0.2 mg/kg). Anesthesia was achieved by 1.5 mg/kg propofol with different doses of esketamine. Propofol consumption per minute was recorded. Hemodynamic index, pulse oxygen saturation, operative time, induction time, awakening status, orientation recovery time, adverse events, and Mini-Mental State Examination (MMSE) were also recorded during gastrointestinal endoscopy. RESULTS: Propofol consumption per minute was 11.78, 10.56, 10.14, and 9.57 (mg/min) in groups P, PK1, PK2, and PK3, respectively; compared with group P, groups PK2 and PK3 showed a decrease of 13.92% (P = 0.021) and 18.76% (P = 0.000), respectively. In all four groups, systolic blood pressure (SBP), diastolic blood pressure (DBP), heart rate (HR), but not pulse oxygen saturation (SpO2) significantly decreased (P = 0.000) immediately after administration of induction, but there were no significant differences between the groups. The induction time of groups P, PK1, PK2, and PK3 was 68.52 ± 18.394, 64.83 ± 13.543, 62.23 ± 15.197, and 61.35 ± 14.470 s, respectively (P = 0.041). Adverse events and psychotomimetic effects were observed but without significant differences between the groups. CONCLUSIONS: The combination of 0.2 mg/kg esketamine and propofol was effective and safe in painless gastrointestinal endoscopy as evidenced by less propofol consumption per minute, shorter induction time, and lower incidence of cough and body movement relative to propofol alone. The lack of significant differences in hemodynamic results, anesthesia-related indices, adverse events, and MMSE results showed the safety to apply this combination for painless gastrointestinal endoscopy. Trial registration This study was registered with China Clinical Trial Registration on 07/11/2020 (registration website: chictr.org.cn; registration numbers: ChiCTR https://clinicaltrials.gov/ct2/show/2000039750 ).


Asunto(s)
Ketamina , Propofol , Método Doble Ciego , Endoscopía Gastrointestinal , Humanos , Ketamina/efectos adversos , Propofol/efectos adversos , Estudios Prospectivos
9.
Am J Physiol Cell Physiol ; 323(1): C29-C45, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35584326

RESUMEN

Syndecan-1 (SDC1, CD138) is one of the heparan sulfate proteoglycans and is essential for maintaining normal cell morphology, interacting with the extracellular and intracellular protein repertoire, as well as mediating signaling transduction upon environmental stimuli. The critical role of SDC1 in promoting tumorigenesis and metastasis has been increasingly recognized in various cancer types, implying a promising potential of utilizing SDC1 as a novel target for cancer therapy. This review summarizes the current knowledge on SDC1 structure and functions, including its role in tumor biology. We also discuss the highlights and limitations of current SDC1-targeted therapies as well as the obstacles in developing new therapeutic methods, offering our perspective on the future directions to target SDC1 for cancer treatment.


Asunto(s)
Neoplasias , Sindecano-1 , Carcinogénesis , Transformación Celular Neoplásica , Humanos , Neoplasias/tratamiento farmacológico , Transducción de Señal , Sindecano-1/metabolismo
10.
J Affect Disord ; 307: 97-107, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35378150

RESUMEN

The rising incidence of postoperative depression (POD) in recent years has placed a heavy burden on patients' physical and mental health. At this point in time, however, POD pathogenesis remains poorly understood and novel therapeutic strategies are being sought. The present study aimed to clarify esketamine's protective effects and possible mechanisms of action in POD. To this avail, we used an animal model of postoperative depression to analyze behavioral, parameters, plus the inflammatory response in serum and in the medial prefrontal cortex (mPFC). Using immunofluorescence staining, we detected the number of microglia and parvalbumin (PV) in mPFC, and determined changes in neuronal dendritic spine density via Golgi staining. Expression of Iba1, PSD95 and NF-κB was examined by Western blot analysis. Our results show that esketamine can significantly improve depression-like symptoms caused by anesthesia and surgery. In addition, esketamine administration reversed the decrease in the density of PV neurons and restored synaptogenesis in mPFC which had been perturbed by inflammation. The evidence obtained suggests esketamine's anti-inflammatory effects may be mediated by the BDNF/TrkB signaling pathway and possibly by attenuation of the nuclear factor κB (NF-κB) pathway. These data warrant further investigations into the interplay of esketamine, and microglia in the modulation of POD symptomatology.


Asunto(s)
Depresión , FN-kappa B , Animales , Antiinflamatorios , Depresión/etiología , Humanos , Ketamina , Ratones , FN-kappa B/metabolismo , Corteza Prefrontal/metabolismo
11.
Semin Cancer Biol ; 86(Pt 3): 400-407, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35183412

RESUMEN

Colon cancer is a major human cancer accounting for about a tenth of all cancer cases thus making it among the top three cancers in terms of incidence as well as mortality. Metastasis to distant organs, particularly to liver, is the primary reason for associated mortality. Chemokines, the chemo-attractants for various immune cells, have increasingly been reported to be involved in cancer initiation and progression, including in colon cancer. Here we discuss the available knowledge on the role of several chemokines, such as, CCL2, CCL3, CCL5, CXCL1, CXCL2, CXCL8 in colon cancer progression. CCL20 is one chemokine with emerging evidence for its role in influencing colon cancer tumor microenvironment through the documents effects on fibroblasts, macrophages and immune cells. We focus on CCL20 and its receptor CCR6 as promising factors that affect multiple levels of colon cancer progression. They interact with several cytokines and TLR receptors leading to increased aggressiveness, as supported by multitude of evidence from in vitro, in vivo studies as well as human patient samples. CCL20-CCR6 bring about their biological effects through regulation of several signaling pathways, including, ERK and NF-κB pathways, in addition to the epithelial-mesenchymal transition. Signaling involving CCL20-CCR6 has profound effect on colon cancer hepatic metastasis. Combined with elevated CCL20 levels in colon tumors and metastatic patients, the above information points to a need for further evaluation of chemokines as diagnostic and/or prognostic biomarkers.


Asunto(s)
Quimiocinas , Neoplasias del Colon , Humanos , Neoplasias del Colon/genética , Neoplasias Hepáticas/secundario , FN-kappa B/metabolismo , Transducción de Señal , Microambiente Tumoral/genética
12.
J Cancer Res Clin Oncol ; 148(3): 547-564, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35083552

RESUMEN

PURPOSE: Autophagy and EMT (epithelial-mesenchymal transition) are the two principal biological processes and ideal therapeutic targets during cancer development. Autophagy, a highly conserved process for degrading dysfunctional cellular components, plays a dual role in tumors depending on the tumor stage and tissue types. The EMT process is the transition differentiation from an epithelial cell to a mesenchymal-like cell and acquiring metastatic potential. There is evidence that the crosstalk between autophagy and EMT is complex in cancer. In recent years, more studies have shown that long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) are involved in autophagy, EMT, and their crosstalk. Therefore, accurate understanding of the regulatory mechanisms of lncRNAs and miRNAs in autophagy, EMT and their interactions is crucial for the clinical management of cancers. METHODS: An extensive literature search was conducted on the Google Scholar and PubMed databases. The keywords used for the search included: autophagy, EMT, crosstalk, lncRNAs, miRNAs, cancers, diagnostic biomarkers, and therapeutic targets. This search provided relevant articles published in peer-reviewed journals until 2021. Data from these various studies were extracted and used in this review. RESULTS: The results showed that lncRNAs/miRNAs as tumor inhibitors or tumor inducers could regulate autophagy, EMT, and their interaction by regulating several molecular signaling pathways. The lncRNAs/miRNAs involved in autophagy and EMT processes could have potential uses in cancer diagnosis, prognosis, and therapy. CONCLUSION: Such information could help find and develop lncRNAs/miRNAs based new tools for diagnosing, prognosis, and creating anti-cancer therapies.


Asunto(s)
Autofagia , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , Neoplasias/patología , ARN Largo no Codificante/genética , Animales , Humanos , Neoplasias/genética , Neoplasias/terapia , Transducción de Señal
13.
Toxicol Mech Methods ; 32(6): 420-430, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34933643

RESUMEN

Diabetic nephropathy is one of the most important and growing diseases globally and the leading cause of cardiovascular mortality in these patients. Taurine is an amino acid that has pleiotropic protective properties on some diseases. This study aimed to investigate the potential role of taurine in the treatment of diabetes-induced nephropathy. To achieve the aim of the present study, a comprehensive systematic search based on PRISMA guidelines has been conducted up to August 2021. A total of 382 articles were found in the electronic databases based on search keywords. After doing the screening, 14 articles were included in the present systematic review. The dated demonstrated elevation of oxidative stress, inflammatory and apoptotic pathways, and changes in other molecules' function plays an essential role in diabetes-induced renal tissue damage. Due to its multiple protective effects, taurine significantly prevented the activation of the pathways mentioned above and altered the function of molecules involved in these pathways, resulting in alleviating diabetic nephropathy. According to the obtained results, it was found that taurine can mitigate diabetes-induced nephropathy, mainly through its anti-oxidant activity, which is an essential factor in activating inflammation and apoptosis pathways.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Antiinflamatorios/uso terapéutico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Apoptosis , Diabetes Mellitus/tratamiento farmacológico , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/prevención & control , Humanos , Estrés Oxidativo , Taurina/farmacología , Taurina/uso terapéutico
14.
Genes Dev ; 35(19-20): 1327-1332, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34531315

RESUMEN

Activating mutations in KRAS (KRAS*) are present in nearly all pancreatic ductal adenocarcinoma (PDAC) cases and critical for tumor maintenance. By using an inducible KRAS* PDAC mouse model, we identified a deubiquitinase USP21-driven resistance mechanism to anti-KRAS* therapy. USP21 promotes KRAS*-independent tumor growth via its regulation of MARK3-induced macropinocytosis, which serves to maintain intracellular amino acid levels for anabolic growth. The USP21-mediated KRAS* bypass, coupled with the frequent amplification of USP21 in human PDAC tumors, encourages the assessment of USP21 as a novel drug target as well as a potential parameter that may affect responsiveness to emergent anti-KRAS* therapy.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animales , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Enzimas Desubicuitinizantes/metabolismo , Ratones , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Ubiquitina Tiolesterasa
15.
Cogn Neurodyn ; 15(4): 649-659, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34367366

RESUMEN

In this paper, phase space reconstruction from stereo-electroencephalography data of ten patients with focal epilepsy forms a series of graphs. Those obtained graphs reflect the transition characteristics of brain dynamical system from pre-seizure to seizure of epilepsy. Interestingly, it is found that the rank of Laplacian matrix of these graphs has a sharp decrease when a seizure is close to happen, which thus might be viewed as a new potential biomarker in epilepsy. In addition, the reliability of this method is numerically verified with a coupled mass neural model. In particular, our simulation suggests that this potential biomarker can play the roles of predictive effect or delayed awareness, depending on the bias current of the Gaussian noise. These results may give new insights into the seizure detection.

16.
Discov Oncol ; 12(1): 33, 2021 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-35201458

RESUMEN

Sphingosine-1-phosphate (S1P), a pleiotropic lipid mediator, participates in various cellular processes during tumorigenesis, including cell proliferation, survival, drug resistance, metastasis, and angiogenesis. S1P is formed by two sphingosine kinases (SphKs), SphK1 and SphK2. The intracellularly produced S1P is delivered to the extracellular space by ATP-binding cassette (ABC) transporters and spinster homolog 2 (SPNS2), where it binds to five transmembrane G protein-coupled receptors to mediate its oncogenic functions (S1PR1-S1PR5). MicroRNAs (miRNAs) are small non-coding RNAs, 21-25 nucleotides in length, that play numerous crucial roles in cancer, such as tumor initiation, progression, apoptosis, metastasis, and angiogenesis via binding to the 3'-untranslated region (3'-UTR) of the target mRNA. There is growing evidence that various miRNAs modulate tumorigenesis by regulating the expression of SphKs, and S1P receptors. We have reviewed various roles of miRNAs, SphKs, S1P, and S1P receptors (S1PRs) in malignancies and how notable miRNAs like miR-101, miR-125b, miR-128, and miR-506, miR-1246, miR-21, miR-126, miR499a, miR20a-5p, miR-140-5p, miR-224, miR-137, miR-183-5p, miR-194, miR181b, miR136, and miR-675-3p, modulate S1P signaling. These tumorigenesis modulating miRNAs are involved in different cancers including breast, gastric, hepatocellular carcinoma, prostate, colorectal, cervical, ovarian, and lung cancer via cell proliferation, invasion, angiogenesis, apoptosis, metastasis, immune evasion, chemoresistance, and chemosensitivity. Therefore, understanding the interaction of SphKs, S1P, and S1P receptors with miRNAs in human malignancies will lead to better insights for miRNA-based cancer therapy.

17.
Sci Rep ; 10(1): 8271, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32427870

RESUMEN

Exosomes contain cell-specific collections of bioactive materials including proteins, lipids, and RNAs that are transported to recipient cells to exert their impacts. MicroRNAs (miRNAs) can function as tumor suppressor or oncogenic genes and miR-21 is one of the most frequently up-regulated miRNAs in solid tumors including colon cancer. The aim of this study was to investigate the role of miR-21, secreted from exosomes, in proliferation and invasion of colon cancer, along with the mechanistic details. We used a variety of biochemical techniques including ultracentrifugation-based exosome purification, electron transmission microscopy, western blot and RT-qPCR to detect the expression levels of miR-21 in exosomes purified from culture media of human colonic adenocarcinoma cell lines. We then performed functional and mechanistic studies using three colon cancer cell lines HT29, T84 and LS174 as well as the normal colon epithelial cells CRL1831. miR-21 target PDCD4 was investigated for its role in mediating miR-21 effects. Expression of miR-21 was significantly up-regulated in exosomes of colon cancer cells, compared to the normal human colon epithelial cells. Treatment of colon cancer cells with isolated exosomes or miR-21 led to an increased expression of genes involved in cell proliferation, invasion and extracellular matrix formation. miR-21 targets PDCD4, TPM1 and PTEN were down-regulated by exosomes and silencing of PDCD4 mimicked miR-21 functional effects, even the induced resistance against 5-FU. Our study suggests that targeted inhibition of exosomes, particularly those carrying miR-21, may represent a novel approach for treatment of colorectal cancer.


Asunto(s)
Adenocarcinoma/genética , Proteínas Reguladoras de la Apoptosis/genética , Neoplasias del Colon/genética , Resistencia a Antineoplásicos , Exosomas/genética , MicroARNs/genética , Proteínas de Unión al ARN/genética , Regiones no Traducidas 3' , Línea Celular Tumoral , Proliferación Celular , Medios de Cultivo/química , Regulación Neoplásica de la Expresión Génica , Células HT29 , Humanos , Invasividad Neoplásica , Regulación hacia Arriba
18.
Rapid Commun Mass Spectrom ; 34(12): e8799, 2020 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-32247289

RESUMEN

RATIONALE: For pharmaceutical quality control, impurities may have unexpected pharmacological or toxicological effects on quality, safety, and efficacy of drugs. Arginine vasopressin (AVP) is an important cyclic peptide drug that is mainly used for the treatment of diabetes insipidus and esophageal varices bleeding. With the advancement made in analytical techniques, liquid chromatography/high-resolution mass spectrometry (LC/HRMS) has emerged as a critical technique for the identification and quantification of structurally related peptide impurities in AVP. METHODS: An LC/HRMS/MS-based method using a quadrupole ion trap-Orbitrap mass spectrometer operated in the positive ion electrospray ionization mode was developed for the determination and quantification of structurally related peptide impurities in AVP. RESULTS: Under optimized experimental conditions, three deamidation products, ([Glu4 ]AVP, [Asp5 ]AVP, and AVP acid), two amino acid deletion impurities (des-Pro7 -AVP and des-Gly9 -AVP), one amino acid insertion impurity (endo-Gly10a -AVP), one end chain reaction product (N-acetyl-AVP), and one AVP isomer were detected. Subsequent quantification using an external standard method estimated the total mass fraction of all structurally related peptide impurities in the AVP study material to be 30.3 mg/g with an expanded uncertainty of 3.0 mg/g (k = 2). CONCLUSIONS: This study complements the AVP impurity profile and improves the separation and discovery of other potential impurities in vasopressin analogues.


Asunto(s)
Arginina Vasopresina , Cromatografía Liquida/métodos , Contaminación de Medicamentos , Espectrometría de Masas en Tándem/métodos , Arginina Vasopresina/análogos & derivados , Arginina Vasopresina/análisis , Arginina Vasopresina/química
19.
Int J Radiat Biol ; 96(3): 383-389, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31977258

RESUMEN

Background: Pancreatic cancers are the common digestive system tumors with poor prognosis and due to its late diagnosis, surgical resection does not remain a viable treatment option in about 80% of patients. Amongst different treatment options, radioactive 125I seed implantation therapy has also emerged as a good alternative in non-resectable pancreatic cancer patients.Purpose: The present review describes the efficacy and safety of iodine-125 seed implantation in unresectable pancreatic cancers in preclinical and clinical studies.Results: In this technique, small radioactive particles are implanted inside the tumor cells to produce the sustain effects. Due to the short radial distance of these radiations, there is a selective and efficient killing of cancer cells without any significant injury to the neighboring cells. Amongst the different methods for implanting 125I seeds in the pancreatic tissues, CT scan or ultrasound-guided percutaneous seed implantation is preferred as it offers shorter operative time, lesser bleeding, early recovery, lesser complications, and low medical costs. The clinical studies have shown that radioactive 125I seed implantation is a good option for the management of local tumor growth, pain palliation, and improvement in the life span of patients suffering from unresectable pancreatic cancer.Conclusion: It may be employed either alone or in combination with cryotherapy, existing chemotherapy, bypass surgery or radiations to achieve the optimal results in these patients. Nevertheless, there is a need to formulate a uniform dose and procedure to achieve homogeneity and develop references for clinical practices.


Asunto(s)
Braquiterapia/métodos , Radioisótopos de Yodo/uso terapéutico , Neoplasias Pancreáticas/radioterapia , Seguridad del Paciente , Animales , Apoptosis , Braquiterapia/efectos adversos , Línea Celular Tumoral , Relación Dosis-Respuesta en la Radiación , Humanos , Radioisótopos de Yodo/efectos adversos , Neoplasias Pancreáticas/cirugía , Pronóstico , Resultado del Tratamiento , Neoplasias Pancreáticas
20.
Clin Exp Pharmacol Physiol ; 46(1): 3-10, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30161295

RESUMEN

Cancer immunotherapy has been increasingly applied in the treatment of advanced malignancies. Consequently, immune checkpoints have become a major concern. As PD-1 is an important immunomodulatory protein, the blockade of PD-1 and its ligand PD-L1 is a promising tumour immunotherapy for human carcinoma. In this review, we first discuss the role of the PD-1/PD-L1 interaction in gastrointestinal tract cancers. Targeting PD-1 and PD-L1 in immune cells and tumour cells may show remarkable efficiency in gastrointestinal tract cancers. Second, the PD-1/PD-L1-associated signalling pathway involved in cancer immunotherapy in gastrointestinal tract cancers is discussed. Most importantly, this review summarizes the PD-1/PD-L1-targeted immunotherapy combinations with relevant signalling pathways, which may result in a breakthrough for the treatment of gastrointestinal tract cancers, such as gastric cancer, colorectal cancer and liver cancer. Meanwhile, the review provides a deeper insight into the mechanism of checkpoint blockade immunotherapies.


Asunto(s)
Antígeno B7-H1/metabolismo , Neoplasias Gastrointestinales/metabolismo , Neoplasias Gastrointestinales/patología , Receptor de Muerte Celular Programada 1/metabolismo , Transducción de Señal , Animales , Antígeno B7-H1/antagonistas & inhibidores , Neoplasias Gastrointestinales/tratamiento farmacológico , Humanos , Ligandos , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA