Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 267
Filtrar
1.
RSC Adv ; 14(24): 17032-17040, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38808236

RESUMEN

Nanopore technology, re-fueled by two-dimensional (2D) materials such as graphene and MoS2, controls mass transport by allowing certain species while denying others at the nanoscale and has a wide application range in DNA sequencing, nano-power generation, and others. With their low transmembrane transport resistance and high permeability stemming from their ultrathin nature, crystalline 2D materials do not possess nanoscale holes naturally, thus requiring additional fabrication to create nanopores. Herein, we demonstrate that nanopores exist in amorphous monolayer carbon (AMC) grown at low temperatures. The size and density of nanopores can be tuned by the growth temperature, which was experimentally verified by atomic images and further corroborated by kinetic Monte Carlo simulation. Furthermore, AMC films with varied degrees of disorder (DOD) exhibit tunable transmembrane ionic conductance over two orders of magnitude when serving as nanopore membranes. This work demonstrates the DOD-tuned property in amorphous monolayer carbon and provides a new candidate for modern membrane science and technology.

2.
Food Chem ; 454: 139839, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38810444

RESUMEN

Probiotic lactic acid bacteria have been widely studied, but much less was focused on probiotic yeasts in food systems. In this study, probiotic Saccharomyces cerevisiae var. boulardii CNCM I-745 was employed to prepare ice cream added with and without inulin (1%, w/v). Metabolomics analysis on the effect of inulin showed 84 and 147 differentially expressed metabolites identified in the ice cream samples from day 1 and day 30 of storage (-18 °C), respectively. Various potential functional metabolites were found, including citric acid, ornithine, D-glucuronic acid, sennoside A, stachyose, maltotetraose, maltopentaose, maltohexaose, maltoheptaose, cis-aconitic acid, gamma-aminobutyric acid, L-threonine, L-glutamic acid, tryptophan, benzoic acid, and trehalose. Higher expression of these metabolites suggested their possible roles through relevant metabolic pathways in improving survivability of the probiotic yeast and functionality of ice cream. This study provides further understanding on the metabolic characteristics of probiotic yeast that potentially affect the functionality of ice cream.

3.
Cell Rep ; 43(5): 114221, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38748877

RESUMEN

ZBP1 is an interferon (IFN)-induced nucleic acid (NA) sensor that senses unusual Z-form NA (Z-NA) to promote cell death and inflammation. However, the mechanisms that dampen ZBP1 activation to fine-tune inflammatory responses are unclear. Here, we characterize a short isoform of ZBP1 (referred to as ZBP1-S) as an intrinsic suppressor of the inflammatory signaling mediated by full-length ZBP1. Mechanistically, ZBP1-S depresses ZBP1-mediated cell death by competitive binding with Z-NA for Zα domains of ZBP1. Cells from mice (Ripk1D325A/D325A) with cleavage-resistant RIPK1-induced autoinflammatory (CRIA) syndrome are alive but sensitive to IFN-induced and ZBP1-dependent cell death. Intriguingly, Ripk1D325A/D325A cells die spontaneously when ZBP1-S is deleted, indicating that cell death driven by ZBP1 is under the control of ZBP1-S. Thus, our findings reveal that alternative splicing of Zbp1 represents autogenic inhibition for regulating ZBP1 signaling and indicate that uncoupling of Z-NA with ZBP1 could be an effective strategy against autoinflammations.


Asunto(s)
Muerte Celular , Isoformas de Proteínas , Proteínas de Unión al ARN , Animales , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Ratones , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética , Humanos , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Transducción de Señal , Ratones Endogámicos C57BL , Empalme Alternativo/genética , Células HEK293 , Inflamación/metabolismo , Inflamación/patología
4.
Cell Death Discov ; 10(1): 255, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38789425

RESUMEN

Caspase-8 (Casp8) serves as an initiator of apoptosis or a suppressor of necroptosis in context-dependent manner. Members of the p90 RSK family can phosphorylate caspase-8 at threonine-265 (T265), which can inactivate caspase-8 for bypassing caspase-8-mediated blockade of necroptosis and can also decrease caspase-8 level by promoting its degradation. Mutating T265 in caspase-8 to alanine (A) in mice blocked TNF-induced necroptotic cecum damage but resulted in unexpectedly massive injury in the small intestine. Here, we show RSK1, RSK2, and RSK3 redundantly function in caspase-8 phosphorylation, and the duodenum is the most severely affected part of the small intestine when T265 phosphorylation of caspase-8 was prevented. Eliminating caspase-8 phosphorylation resulted in a duodenum-specific increase in basal caspase-8 protein level, which shall be responsible for the increased sensitivity to TNF-induced damage. Apoptosis of intestinal epithelial cells (IECs) was predominant in the duodenum of TNF-treated Rsk1-/-Rsk2-/-Rsk3-/- and Casp8T265A/T265A mice, though necroptosis was also observed. The heightened duodenal injury amplified systemic inflammatory responses, as evidenced by the contribution of hematopoietic cells to the sensitization of TNF-induced animal death. Further analysis revealed that hematopoietic and non-hematopoietic cells contributed differentially to cytokine production in response to the increased cell death. Collectively, RSKs emerges as a previously overlooked regulator that, via tissue/organ-constrained inactivating caspase-8 and/or downregulating caspase-8 protein level, controls the sensitivity to TNF-induced organ injury and animal death.

6.
7.
Dalton Trans ; 53(12): 5562-5566, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38426855

RESUMEN

Two Ni-inserted polyoxotantalates, K5.5Na2H0.5[Ni(H2O)2{NiTa10O30(OH)2}]·21H2O (1) and K6Na4[Ni(en){NiTa10O32}]·22H2O (2, en = ethanediamine), were synthesized in this work. Crystallographic data analyses reveal that 1 and 2 have similar configurations. A minor difference between these two structures is that the {Ni(H2O)2} unit in 1 is replaced by {Ni(en)} unit in 2. Notably, the other Ni in 1 and 2 is located as a heteroatom at the center of the {Ta10} unit, which is reported in POTas for the first time. Moreover, 2 exhibits excellent catalytic performance in transesterification reactions in a preliminary exploration of the catalytic ability of the synthesized POTas.

8.
Food Chem X ; 21: 101054, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38162038

RESUMEN

A ratiometric fluorescence sensor platform with easy-to-use and accurate is nanoengineered for NH3 quantitative detection and visual real-time monitoring of chicken freshness using smartphones. The ratiometric fluorescent probe formed by combining the zinc ion complex and carbon dots has a double-emitted fluorescence peak. The fluorescence intensity of the complex changed can be clearly observed with the increase of the concentration of ammonia solution under 365 nm wavelength excitation. In order to detect NH3 concentration in gaseous phase, a portable paper-based sensor was designed. The sensor had a good linear relationship with NH3 concentration ranging from 10.0 to 90.0 µmol/L and the LOD value was 288 nM. This fluorescent paper-based sensor was used to check the freshness of chicken breast refrigerated at 4 °C, revealed observable shifts from blue to green. The fluorescent paper-based sensor can detect NH3 concentration in real time and simplify the monitoring process of meat freshness while ensuring accuracy and stability.

9.
Cancers (Basel) ; 16(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38275900

RESUMEN

Once considered "undruggable" due to the strong affinity of RAS proteins for GTP and the structural lack of a hydrophobic "pocket" for drug binding, the development of proprietary therapies for KRAS-mutant tumors has long been a challenging area of research. CRISPR technology, the most successful gene-editing tool to date, is increasingly being utilized in cancer research. Here, we provide a comprehensive review of the application of the CRISPR system in basic and translational research in KRAS-mutant cancer, summarizing recent advances in the mechanistic understanding of KRAS biology and the underlying principles of drug resistance, anti-tumor immunity, epigenetic regulatory networks, and synthetic lethality co-opted by mutant KRAS.

10.
Front Endocrinol (Lausanne) ; 14: 1229659, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38089618

RESUMEN

Purpose: We sought to identify distinct risk factors for hyperuricemia in native Tibetan and immigrant Han populations in Tibet, China. Methods: Three cohorts of male participants aged between 20 and 40 years were enrolled in this study. Biochemical parameters including serum uric acid (UA), fasting plasma glucose, insulin, lactate dehydrogenase (LDH), thyroxin, blood cell count, aminotransferase, and lipid profiles were analyzed. The association of risk factors with UA levels was evaluated using a multivariable line regression model. The effect of UA level on the biochemical parameters between the Hans and Tibetans was evaluated by two-way ANOVA. Results: The prevalence of hyperuricemia (≥420 µmol/L) was 24.8% (62/250) in the Hans, similar to 23.8% (29/136) in the Tibetans. In the regression analysis, the risk factors that were significantly associated with UA in Hans did not apply to Tibetans. Tibetans had higher fasting insulin (P<0.05) and LDH (P<0.01) levels, in contrast with lower levels of triglycerides (P<0.05), total cholesterol (P<0.01), and low-density lipoprotein-cholesterol (P<0.01) than Hans in normal UA populations. Biochemistry analysis revealed lower albumin levels (P<0.001) and higher levels of all aminotransaminase and especially alkaline phosphatase (P<0.01) in Tibetans than in Hans in both populations. Compared with Hans, Tibetans had lower serum levels of urea, creatinine, and electrolytes in the normal UA population, which were further exacerbated in the high UA population. Tibetans had comparable white blood cell counts as Hans in both normal and high UA populations. In contrast, the red blood cell count and hemoglobin concentration were much lower in Tibetans than in Hans under high UA conditions. Conclusions: The distinctive biochemistry between Tibetans and Hans may underlie the different etiologies of hyperuricemia in Tibet, China.


Asunto(s)
Hiperuricemia , Insulinas , Adulto , Humanos , Masculino , Adulto Joven , China/epidemiología , Colesterol , Hiperuricemia/epidemiología , Ácido Úrico , Pueblos del Este de Asia , Etnicidad
11.
Sci Rep ; 13(1): 21524, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38057438

RESUMEN

Shahe Reservoir is a key node in the upstream of the North Canal, and the water quality has gradually improved after the implementation of low water operation in 2018. The organic matter(OM) in the sediment decreased from 16.66 to 14.22%.In this study, the FI index and parallel factor method were used to investigate the traceability of OM and dissolved organic matter (DOM) in the Shahe Reservoir before and during low water level operation(LWLO), and the results showed that the terrestrial source fraction of OM in sediments was mainly related to organic-rich terrestrial plant residues carried by tributaries and overflows/outfalls during the rainy season, and the FI index indicated that the organic matter (OM) in the Shahe Reservoir before and during LWLO in each DOM in the area is derived from authigenic sources of autotrophic microorganisms, algae, etc. The parallel factor method shows that more than most of the pollutants in the DOM are input from endogenous sources and a small proportion of pollutants are input from exogenous sources. Nutrients in both sediment and interstitial water increased during the LWLO, with TN and TP levels increasing by 262.38 and 204.45 mg·kg-1 in sediment, NH4+-N, PO43--P, TN and TP in interstitial water increasing by 0.98, 1.36, 2.07 and 4.33 mg·L-1, respectively. Pearson correlation analysis and principal component analysis showed that OM was significantly correlated with nutrients: OM and TN (p < 0.01) and OM and TP (p < 0.05) in the pre-LWLO; OM and TN and TP (p < 0.01) in the LWLO.The results suggested that organic matter pollution control should be mainly carried out from the perspective of endogenous input, focusing on controlling the release of nutrients in sediments.

12.
Thorac Cancer ; 14(30): 3032-3041, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37680006

RESUMEN

BACKGROUND: Esophageal cancer (ESCA) is one of the most aggressive and lethal human malignant cancers. MicroRNA-1301-3p (miR-1301-3p) plays vital roles in a majority of malignancies. The aim of this study was to investigate the role of miR-1301-3p/NBL1 axis on ESCA cell invasion, migration, epithelial-mesenchymal transition (EMT) process, as well as its association with prognosis of ESCA patients. METHODS: The expression levels of miR-1301-3p and NBL1 were predicted by bioinformatics and further verified by RT-qPCR assays. Kaplan-Meier (K-M) plotter analysis and univariate and multivariate Cox analyses were used to evaluate the relationship between miR-1301-3p and clinicopathological variables and prognosis. The role of miR-1301-3p on cell invasion, migration was detected by transwell invasion, and wound healing assays, respectively. The EMT-related proteins were detected by western blot. The target genes and the target binding sites were predicted by bioinformatics and further determined by RT-qPCR assay. RESULTS: MiR-1301-3p was remarkably upregulated in ESCA tissues and cells, and its high expression was associated with poor prognosis of ESCA. Overexpression of miR-1301-3p promoted ESCA cell invasion, migration and mediated EMT process in vitro, whereas knockdown of miR-1301-3p showed the opposite effects. Moreover, NBL1 was predicted as a target gene of miR-1301-3p. NBL1 was lowly expressed in ESCA cells and significantly decreased after upregulation of miR-1301-3p. Meanwhile, we found that low expression of NBL1 was significantly associated with poor prognosis of ESCA patients. CONCLUSION: MiR-1301-3p is a potential biomarker for predicting the prognosis of ESCA patients. It may promote ESCA invasion, migration and EMT progression by regulating NBL1 expression.


Asunto(s)
Neoplasias Esofágicas , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Transición Epitelial-Mesenquimal/genética , Línea Celular Tumoral , Proliferación Celular/genética , Movimiento Celular/genética , Neoplasias Esofágicas/genética , Regulación Neoplásica de la Expresión Génica
13.
Clin Immunol ; 256: 109770, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37717672

RESUMEN

The combination of antiangiogenic agents and immune checkpoint inhibitors is more efficient than monotherapy in the management of hepatocellular carcinoma (HCC). Lenvatinib plus anti-PD1 antibodies have become the mainstay in HCC treatment. However, more than half the patients with HCC are non-responsive, and the mechanisms underlying drug resistance are unknown. To address this issue, we performed single-cell sequencing on samples from six HCC patients, aiming to explore cellular signals and molecular pathways related to the effect of lenvatinib plus anti-PD1 antibody treatment. GSVA analysis revealed that treatment with lenvatinib plus anti-PD1 antibody led to an increase in the TNF-NFKB pathway across all immune cell types, as compared to the non-treatment group. Mucosal-associated invariant T (MAIT) cells were found to secrete TNF, which activates TNFRSF1B on regulatory T cells, thereby promoting immunosuppression. Additionally, TNFSF9 was highly expressed in anticancer immune cells, including CD8+ effector T cells, MAIT, and γδ T cells in the treatment group. We also detected CD3+ macrophages in both HCC and pan-cancer tissues. Overall, our findings shed light on the potential mechanisms behind the effectiveness of lenvatinib plus anti-PD1 antibody treatment in HCC patients. By understanding these mechanisms better, we may be able to develop more effective treatment strategies for patients who do not respond to current therapies.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Células T Invariantes Asociadas a Mucosa , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Células T Invariantes Asociadas a Mucosa/metabolismo , Compuestos de Fenilurea/uso terapéutico , Compuestos de Fenilurea/farmacología , Receptores Tipo II del Factor de Necrosis Tumoral
14.
Front Pharmacol ; 14: 1218467, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37719860

RESUMEN

Introduction: Artesunate, a derivative of artemisinin, has anti-malarial effects, and in recent years has also been reported to have anti-tumor activity. However, its anti-tumor mechanisms are not well understood. Methods: In this study, we focused on the targeting of Hsp90 by artesunate to inhibit tumor cell proliferation, which we examined using immunoprecipitation, a proliferation assay, flow cytometry, western blotting, a tumor xenograft animal model, and immunohistochemistry. Furthermore, to examine the tumor-suppressive effects of artesunatein nude mice, we used artesunate-loaded PLGA-PEG nanoparticles. Results: The binding of artesunate to Hsp90 was found to reduce the expression of its client proteins AKT, ERK, p-AKT, p-ERK, and EGFR, thereby blocking the cell cycle at the G0/G1 → S stage in lymphoma cells and inducing apoptosis. In addition, the results of tumor xenograft experiments revealed that artesunate reduced the expression of AKT and ERK proteins in tumor tissues, inhibited tumor proliferation, and reduced tumor size and weight. Furthermore, nanoparticle encapsulation was demonstrated to enhance the anti-cancer activity of artesunate. Discussion: We thus established that artesunate inhibits the proliferation of lymphoma cells by targeting the Hsp90 protein, and we accordingly believe that this compound has potential for development as a novelanti-tumor drug.

15.
Front Pharmacol ; 14: 1192225, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37554986

RESUMEN

Physalis pubescens L. is an annual or perennial plant in the family Solanaceae It is used in traditional medicine for treating sore throats, coughs, urinary discomfort, and astringent pain, and externally for pemphigus and eczema in northern China. The proliferation inhibitory activity and mechanisms of the ethyl acetate extract (PHY-EA) from the leaves of Physalis pubescens were investigated. High performance liquid chromatography was used to identify the chemical composition of PHY-EA; sulforhodamine B was used to detect the proliferation inhibitory effect of PHY-EA on MCF-7, CA-46, Hela, HepG2, B16, and other tumor cells; flow cytometry was used to detect the effect of PHY-EA on the lymphoma cell cycle and apoptosis; Western blot was used to detect the expression of the cycle- and apoptosis-related proteins. The expression of Ki-67 and cleaved caspase 3 was detected by immunohistochemistry. The results showed that PHY-EA contained physalin B, physalin O, and physalin L. PHY-EA blocked the cell cycle of G2/M→G0/G1 in lymphoma cells and induced apoptosis in tumor cells. Mouse transplantation tumor experiments showed that PHY-EA had a significant inhibitory effect on mouse transplantation tumors, and the tumor volume and weight were significantly reduced. In conclusion, PHY-EA has a good antiproliferative effect on Burkkit lymphoma, indicating its potential medicinal value.

16.
J Tradit Chin Med ; 43(4): 770-779, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37454262

RESUMEN

OBJECTIVE: To observe the clinical efficacy on improving the quality of meibum in patients suffer from dry eye disease (DED) due to meibomian gland dysfunction (MGD) with hyperactivity ofdue todeficiency pattern after being treated with Pinggan Yuyin Qingre formula (, PGYYQR). METHODS: Totally 120 patients who met the inclusion criteria were included and stratified into three levels according to the level of MGD (1-3), and patients in each level was randomly allocated into the treatment group and control group according to a 1∶1 ratio. Both groups were treated with sodium hyaluronate eye drops, and the treatment group was also given PGYYQR granules. Both groups were treated continuously for eight weeks. The score of the properties of meibomian gland (MG) secretion, the score of the palpebral margins, the average noninvasive tear breakup time (NITBUTav), lipid layer thickness (LLT), and Traditional Chinese Medicine (TCM) syndrome efficacy were compared between the two groups after treatment. RESULTS: A total of 116 cases were included in the statistical analysis. The differences were statistically significant in the score of the properties of MG secretion, the score of the palpebral margins, and NITBUTav between the two groups after treatment, the treatment group was superior to the control group; there was no evidence of a difference in LLT. In terms of TCM syndrome efficacy, the total effective rate was 84.7% in the treatment group and 50.9% in the control group, with the statistically significant difference. None of the included cases had adverse reactions. CONCLUSIONS: PGYYQR is effective in improving the quality of meibum, and the tear film stability which thereby relieving the ocular symptoms in MGD-related DED patients with hyperactivity ofdue todeficiency pattern.


Asunto(s)
Síndromes de Ojo Seco , Disfunción de la Glándula de Meibomio , Humanos , Disfunción de la Glándula de Meibomio/tratamiento farmacológico , Glándulas Tarsales , Síndromes de Ojo Seco/tratamiento farmacológico , Síndromes de Ojo Seco/diagnóstico , Resultado del Tratamiento , Lágrimas
17.
Int J Biol Macromol ; 248: 125932, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37482152

RESUMEN

The present study aimed to purify and characterize a novel low-molecular-weight antimicrobial peptide (AMP) named as PNMGL2 produced by Lactiplantibacillus plantarum NMGL2. The AMP was effectively separated and purified by ethyl acetate extraction and DEAE-Sepharose anion exchange chromatography. Tricine-SDS-PAGE of the purified AMP showed a major protein band below 1.7 kDa, which was identified by MALDI-TOF MS to be a hexapeptide LNFLKK (761.95 Da), and structurally characterized to be combination of helixes and random coil by a PEP-FOLD 3 De novo approach. The antimicrobial activity of LNFLKK was confirmed by chemical synthesis of the peptide that showed clear inhibition (MIC 7.8 mg/mL) against both Gram-positive bacteria (Staphylococcus aureus and Listeria monocytogenes), and Gram-negative bacteria (Enterobacter sakazakii, Escherichia coli and Shigella flexneri). PNMGL2 was pH resistant (pH 2-9), heat stable (121 °C, 30 min), and protease sensitive. Treatment of UV rays, sodium chloride and organic solvents did not decrease the activity. Sequencing of the whole genome of L. plantarum NMGL2 revealed presence of a bacteriocin gene cluster with two putative bacteriocin genes (ORF4 and ORF5) that were not expressed, confirming the significance of PNMGL2 contributing the antimicrobial activity of the strain. This study demonstrated the low-molecular-weight AMP that was uncharacterized in the relevant available databases, suggesting its potential application as a novel natural food preservative.


Asunto(s)
Bacteriocinas , Lactobacillus plantarum , Antibacterianos , Lactobacillus plantarum/química , Bacteriocinas/genética , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Péptidos Antimicrobianos
18.
J Hepatocell Carcinoma ; 10: 697-712, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37138764

RESUMEN

Purpose: Immunogenic cell death (ICD) is a cell death modality that plays a vital role in anticancer therapy. In this study, we investigated whether lenvatinib induces ICD in hepatocellular carcinoma and how it affects cancer cell behavior. Patients and Methods: Hepatoma cells were treated with 0.5 µM lenvatinib for two weeks, and damage-associated molecular patterns were assessed using the expression of calreticulin, high mobility group box 1, and ATP secretion. Transcriptome sequencing was performed to investigate the effects of lenvatinib on hepatocellular carcinoma. Additionally, CU CPT 4A and TAK-242 were used to inhibit TLR3 and TLR4 expressions, respectively. Flow cytometry was used to assess PD-L1 expression. Kaplan-Meier and Cox regression models were applied for prognosis assessment. Results: After treatment with lenvatinib, there was a significant increase in ICD-associated damage-associated molecular patterns, such as calreticulin on the cell membrane, extracellular ATP, and high mobility group box 1, in hepatoma cells. Following treatment with lenvatinib, there was a significant increase in the downstream immunogenic cell death receptors, including TLR3 and TLR4. Furthermore, lenvatinib increased the expression of PD-L1, which was later inhibited by TLR4. Interestingly, inhibiting TLR3 in MHCC-97H and Huh7 cells strengthened their proliferative capacity. Moreover, TLR3 inhibition was identified as an independent risk factor for overall survival and recurrence-free survival in patients with hepatocellular carcinoma. Conclusion: Our study revealed that lenvatinib induced ICD in hepatocellular carcinoma and upregulated PD-L1 expression through TLR4 while promoting cell apoptosis through TLR3. Antibodies against PD-1/PD-L1 can enhance the efficacy of lenvatinib in the management of hepatocellular carcinoma.

19.
BMC Cancer ; 23(1): 365, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37085830

RESUMEN

OBJECTIVE: In this study, we aimed to investigate the predictive efficacy of magnetic resonance imaging (MRI) radiomics features at different time points of neoadjuvant therapy for rectal cancer in patients with pathological complete response (pCR). Furthermore, we aimed to develop and validate a radiomics space-time model (RSTM) using machine learning for artificial intelligence interventions in predicting pCR in patients. METHODS: Clinical and imaging data of 83 rectal cancer patients were retrospectively analyzed, and the patients were classified as pCR and non-pCR patients according to their postoperative pathological results. All patients received one MRI examination before and after neoadjuvant therapy to extract radiomics features, including pre-treatment, post-treatment, and delta features. Delta features were defined by the ratio of the difference between the pre- and the post-treatment features to the pre-treatment feature. After feature dimensionality reduction based on the above three feature types, the RSTM was constructed using machine learning methods, and its performance was evaluated using the area under the curve (AUC). RESULTS: The AUC values of the individual basic models constructed by pre-treatment, post-treatment, and delta features were 0.771, 0.681, and 0.871, respectively. Their sensitivity values were 0.727, 0.864, and 0.909, respectively, and their specificity values were 0.803, 0.492, and 0.656, respectively. The AUC, sensitivity, and specificity values of the combined basic model constructed by combining pre-treatment, post-treatment, and delta features were 0.901, 0.909, and 0.803, respectively. The AUC, sensitivity, and specificity values of the RSTM constructed using the K-Nearest Neighbor (KNN) classifier on the basis of the combined basic model were 0.944, 0.871, and 0.983, respectively. The Delong test showed that the performance of RSTM was significantly different from that of pre-treatment, post-treatment, and delta models (P < 0.05) but not significantly different from the combined basic model of the three (P > 0.05). CONCLUSIONS: The RSTM constructed using the KNN classifier based on the combined features of before and after neoadjuvant therapy and delta features had the best predictive efficacy for pCR of neoadjuvant therapy. It may emerge as a new clinical tool to assist with individualized management of rectal cancer patients.


Asunto(s)
Terapia Neoadyuvante , Neoplasias del Recto , Humanos , Terapia Neoadyuvante/métodos , Inteligencia Artificial , Estudios Retrospectivos , Neoplasias del Recto/diagnóstico por imagen , Neoplasias del Recto/terapia , Neoplasias del Recto/patología , Imagen por Resonancia Magnética/métodos , Aprendizaje Automático
20.
Front Bioeng Biotechnol ; 11: 1128371, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36911201

RESUMEN

Currently available enzyme replacement therapies for lysosomal storage diseases are limited in their effectiveness due in part to short circulation times and suboptimal biodistribution of the therapeutic enzymes. We previously engineered Chinese hamster ovary (CHO) cells to produce α-galactosidase A (GLA) with various N-glycan structures and demonstrated that elimination of mannose-6-phosphate (M6P) and conversion to homogeneous sialylated N-glycans prolonged circulation time and improved biodistribution of the enzyme following a single-dose infusion into Fabry mice. Here, we confirmed these findings using repeated infusions of the glycoengineered GLA into Fabry mice and further tested whether this glycoengineering approach, Long-Acting-GlycoDesign (LAGD), could be implemented on other lysosomal enzymes. LAGD-engineered CHO cells stably expressing a panel of lysosomal enzymes [aspartylglucosamine (AGA), beta-glucuronidase (GUSB), cathepsin D (CTSD), tripeptidyl peptidase (TPP1), alpha-glucosidase (GAA) or iduronate 2-sulfatase (IDS)] successfully converted all M6P-containing N-glycans to complex sialylated N-glycans. The resulting homogenous glycodesigns enabled glycoprotein profiling by native mass spectrometry. Notably, LAGD extended the plasma half-life of all three enzymes tested (GLA, GUSB, AGA) in wildtype mice. LAGD may be widely applicable to lysosomal replacement enzymes to improve their circulatory stability and therapeutic efficacy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA