Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Small ; : e2402595, 2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38764288

RESUMEN

The widespread adoption of aqueous Zn ion batteries is hindered by the instability of the Zn anode. Herein, an elegant strategy is proposed to enhance the stability of Zn anode by incorporating nicotinic acid (NA), an additive with a unique molecule-ion conversion mechanism, to optimize the anode/electrolyte interface and the typical ZnSO4 electrolyte system. Experimental characterization and theoretical calculations demonstrate that the NA additive preferentially replaces H2O in the original solvation shell and adsorbs onto the Zn anode surface upon conversion from molecule to ion in the electrolyte environment, thereby suppressing side reactions arising from activated H2O decomposition and stochastic growth of Zn dendrites. Simultaneously, such a molecule-to-ion conversion mechanism may induce preferential deposition of Zn along the (002) plane. Benefiting from it, the Zn||Zn symmetric battery cycles stably for 2500 h at 1 mA cm-2, 1 mAh cm-2. More encouragingly, the Zn||AC full batteries and the Zn||AC full batteries using NA electrolyte and Zn||VO2 full batteries also exhibit excellent performance improvements. This work emphasizes the role of variation in the form of additives (especially weak acid-based additives) in fine-tuning the solvation structure and the anode/electrolyte interface, hopefully enhancing the performance of various aqueous metal batteries.

2.
J Colloid Interface Sci ; 661: 730-739, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38325171

RESUMEN

Zn-Ni batteries have garnered considerable attention due to their high specific energy, consistent discharge voltage, favorable performance at low temperatures, and environmentally benign nature. Nevertheless, anode interface issues such as dendrite growth, hydrogen evolution, and interfacial side reactions lead to poor cycling stability of Zn-Ni batteries, significantly limiting their further commercial applications. In this study, we propose a facile electrolyte engineering strategy to optimize the Zn anode interfacial environment and stabilize the Zn anode by introducing tannic acid (TA) into the KOH electrolyte. The incorporated TA complexing agent addition will be used to prevent the direct contact of H2O with the anode surface and promote the desolvation of Zn2+ through complexation, thus suppressing the interfacial corrosion. Consequently, the Zn symmetric battery using TA electrolyte cycles stably for 178 h at 1 mA cm-2. The Zn-Ni full batteries with TA electrolyte maintain 98.08 % capacity retention after 2000 cycles at 20C. This study will be of immediate benefit in commercializing large-scale, practical energy storage applications.

3.
Small ; 20(16): e2307322, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38032169

RESUMEN

Aqueous zinc ion batteries (AZIBs) are considered promising energy storage devices because of their high theoretical energy density and cost-effectiveness. However, the ongoing side reactions and zinc dendrite growth during cycling limit their practical application. Herein, trisodium methylglycine diacetate (Na3MGDA) additive containing the additional inert group methyl is introduced for Zn anode protection, and the contribution of methyl as an inert group to the Zn anode stability is discussed. Experimental results reveal that the methyl group with various effects enhances the interaction between the polar groups in Na3MGDA and the Zn2+/Zn anode. Thus, the polar carboxylate negative ions in MGDA anions can more easily modify the solvation structure and adsorb on the anode surface in situ to establish a hydrophobic electrical double layer (EDL) layer with steric hindrance effects. Such the EDL layer exhibits a robust selectivity for Zn deposition and a significant inhibition of parasitic reactions. Consequently, the Zn||Zn symmetric battery presents 2375 h at 1 mA cm-2, 1 mAh cm-2, and the Zn||V6O13 full battery provides 91% capacity retention after 1300 cycles at 3 A g-1. This study emphasizes the significant role of inert groups of the additive on the interfacial stability during the plating/stripping of high-performance AZIBs.

4.
J Colloid Interface Sci ; 649: 372-383, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37354794

RESUMEN

Aqueous zinc-ion batteries (AZIBs) are considered as a promising alternative to lithium-ion batteries for stationary energy storage due to their environmental benignity and cost-effectiveness. However, the development of AZIBs continues to be plagued by a lack of cathode materials with high specific capacity and superior lifetime. Herein, we in-situ synthesize amorphous VO2@rGO assisted by controlling the charging cut-off voltage. Experimental results and theoretical calculations confirm that the amorphous VO2(A)@rGO can effectively reduce the migration energy barrier of Zn2+, improve the conductivity of the electrode, and promote the insertion/extraction of Zn2+. Consequently, the Zn//VO2(A)@rGO battery exhibits an ultra-high specific capacity of 527.0 mAh·g-1 at 1 A·g-1 after 100 cycles, an ultra-long cycle stability of 183.4 mAh·g-1 at 20 A·g-1 after 30,000 cycles, and an energy of 316.1 Wh·Kg-1 at a power density of 6082.9 W·Kg-1 power density. Meanwhile, we reveal that the amorphous VO2@rGO electrode follows a hybrid mechanism of classical Zn2+ insertion/de-insertion and the reversible phase transition from amorphous VO2 to V2O3. This study highlights that in-situ preparation of amorphous VO2@rGO cathode materials by controlling the charging voltage interval, opening up further possibilities for the development of high-performance AZIB cathodes.

5.
Toxics ; 11(2)2023 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-36851068

RESUMEN

In recent years, China has determined the national goal of "developing national environmental criteria", thereby promoting the rapid development of environmental quality criteria research in China. In 2017, the Ministry of Ecology and Environment of China (MEEC, formerly the Ministry of Environmental Protection of China) issued the technical guideline for deriving water quality criteria (WQC) for protection of freshwater organisms (HJ 831-2017), and in 2022, they organized the guideline revision and issued an updated version (HJ 831-2022). The primary contents of the revision included the following. The minimum toxicity data requirements were upgraded from 6 to 10, and the species mean toxicity value was replaced by the same effect toxicity value for the criteria calculation. It is now required that the tested organisms must be distributed in China's natural fresh waters, and the toxicity data of non-native model species will no longer be used. The list of freshwater invasive species in China that cannot be used as test species was added into the guideline. The acute/chronic ratio (ACR) method for the criteria derivation and the extreme value model were deleted, and the provisions for testing the toxicity data distribution were also deleted. The exposure time of the toxicity test of various tested organisms was refined, and the priority of the toxicity data was clearly specified. This paper introduces the framework and specific technical requirements of HJ 831-2022 in detail, including data collection, pre-processing of toxicity data, criteria derivation, fitting models, and quality control. This introduction is helpful for international peers to understand the latest research progress of China's WQC.

6.
Sci Total Environ ; 867: 161553, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36640894

RESUMEN

Microplastics are ubiquitous in all environmental compartments, including food and water. A growing body of evidence suggests the potential health impacts of continuous microplastic ingestion on humans. However, a lack of information on microplastic exposure to humans through drinking water and the high heterogeneity of available data limits advancements in health risk assessments. In the present study, laser direct infrared spectroscopy (LD-IR) was used to determine the occurrence of microplastics in bottled water sold in China. Then, the ingestion level of microplastics through drinking water was estimated. The results showed that the average microplastic abundance in bottled water was 72.32 ± 44.64 items/L, which was higher than that detected in tap water (49.67 ± 17.49 items/L). Overall, the microplastic structures were dominated by films and mainly consisted of cellulose and PVC. Their sizes were concentrated in the range of 10-50 µm, accounting for 67.85 ± 8.40 % of the total microplastics in bottled water and 75.50 % in tap water. The estimated daily intake of microplastics (EDI) by infants through bottled water and tap water was almost twice as high as that by adults, although adults ingested more microplastics. The present results provide valuable data for further assessing human health risks associated with exposure to microplastics.


Asunto(s)
Agua Potable , Contaminantes Químicos del Agua , Humanos , Microplásticos , Agua Potable/química , Plásticos , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis
7.
Materials (Basel) ; 13(22)2020 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-33227994

RESUMEN

The traditional methods for preparing magnesium aluminum layered double hydrotalcite (Mg2Al-CO3LDHs) in industry include coprecipitation and hydrothermal methods. Both these methods have the disadvantages of high preparation cost and complicated water washing process. Using Mg(OH)2, Al(OH)3, and CO2 as raw materials in this work, the Mg2Al-CO3 LDHs are successfully prepared by mechanochemical method, which solves the shortcomings of traditional preparation method and realizes the conversion and utilization of CO2 resource. The prepared Mg2Al-CO3 LDHs are evaluated as a heat stabilizer in poly(vinyl chloride) (PVC). The result indicates that, when 2.4 phr Mg2Al-CO3 LDHs, 0.3 phr ZnSt2, and 0.3 phr of zinc acetylacetonate are added to the PVC, the thermal stability time of PVC can reach 190 min, which is better than PVC containing commercial Mg2Al-CO3 LDHs. Meanwhile, its processing performance is basically the same as the PVC containing commercial Mg2Al-CO3 LDHs.

8.
ACS Appl Mater Interfaces ; 12(29): 32526-32535, 2020 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-32589013

RESUMEN

Aqueous ZIBs are one of the most promising next-generation rechargeable batteries because of the high capacity, high hydrogen evolution overpotential, and chemically stable reversible plating/stripping of the zinc electrode in the mild aqueous electrolyte. However, there are limited cathode materials that can store Zn2+ reversibly with superior cycling and rate capability. Herein, hierarchically porous nanorods composed of twinborn α-(Mn2O3-MnO2) heterostructures are proposed as a robust cathode for Zn storage. Thanks to the hierarchically porous nanorod morphology and the abundant interface of the heterostructures involving a built-in electric field, the as-obtained twinborn α-(Mn2O3-MnO2) electrode delivers a high capacity of 170 mA h g-1 for 2000 cycles at 500 mA g-1 and shows an excellent rate capability of up to 1.5 A g-1 with a capacity of 124 mA h g-1. The inspiring results achieved exhibit the enormous potential of the high-performance heterostructure cathode for fast and stable ZIBs.

9.
J Colloid Interface Sci ; 562: 518-528, 2020 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-31785934

RESUMEN

A novel three-dimensional (3D) flower-like ZnO@Ag composite is successfully synthesized through a simple and facile process, which is characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS).When evaluated as an anodic material for nickel-zinc alkaline secondary batteries, the 3D flower-like ZnO@Ag composite exhibits the high discharge capacity (627 mAh g-1) and long cycle life (830 cycles). The outstanding electrochemical performance is ascribed to the Ag nanoparticles enhancing electron conductivity and the uniform flower-like structure providing enough electrochemical reaction sites, so as to reduce electrode polarization and improve cell efficiency. Furthermore, the possible growth mechanism of 3D flower-like ZnO@Ag composite has been proposed. The effect of silver content on formation of ZnO@Ag composites was also investigated in detail, indicating the appropriate silver content plays a key role in forming a defined 3 D flower-like structure for the ZnO@Ag composite.

10.
Nanoscale ; 11(27): 13032-13039, 2019 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-31265045

RESUMEN

Vanadium dioxide (VO2) is a very promising cathode material for aqueous zinc ion batteries (AZIBs) because of its high reversible specific capacity, excellent rate performance and fast diffusion kinetics. However, its long-term cycle stability and compatibility with electrolytes have not met expectations. In this study, another metastable phase of vanadium dioxide-monoclinic VO2(D)-is demonstrated to be a better choice as a cathode for AZIBs. Electrochemical results revealed that the as-prepared VO2(D) hollow nanospheres delivered high reversible discharge capacity (up to 408 mA h g-1 at 0.1 A g-1), exceptional rate performance (200 mA h g-1 at 20 A g-1), and long cyclic endurance stability (cycling for 30 000 cycles with a low capacity fading rate of 0.0023% per cycle) in inexpensive 3 M ZnSO4 electrolyte. Furthermore, the electrochemical reaction mechanism was corroborated using ex situ XRD, HRTEM and XPS, showing that an interesting electrochemically induced phase transition from VO2(D) to V2O5·xH2O occured with the insertion/extraction of zinc ions. Finally, the prototype batteries assembled with our as-prepared VO2(D) hollow nanospheres and the impressive performance of this electrode under high active material mass loading further reveal its high potential in practical applications.

11.
Nanotechnology ; 30(1): 015602, 2019 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-30272569

RESUMEN

Rose-like zinc-aluminum hydrotalcite (ZnAl-LDH) was synthesized in an organic/water mixed solvent system by a simple hydrothermal method and applied to zinc-nickel secondary battery, and its electrochemical performance as a negative electrode active material was also studied. Rose-like ZnAl-LDH has the characteristic diffraction peaks of ZnAl-LDH. SEM and TEM results show that the rose-like ZnAl-LDH was assembled by LDH nanosheets with the center as the axis and inclined at certain angles to form a rose-like structure. Through cyclic voltammetry, EIS and galvanostatic charge and discharge tests, rose-like ZnAl-LDH is superior to the coprecipitation synthesized flake-like ZnAl-LDH in cycle stability and discharge capacity. The initial discharge specific capacity of rose-like ZnAl-LDH is 363.4 mAh g-1, after 1250 cycles, the specific discharge capacity was 366.848 mAh g-1, the average discharge specific capacity was 392.455 mAh g-1 during the entire charge/discharge process. The results show that the rose-like ZnAl-LDH is a promising material with good cycle stability and high specific discharge capacity for energy storage devices.

12.
Nanotoxicology ; 12(6): 571-585, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29732947

RESUMEN

Calcium carbonate nanomaterials (nano-CaCO3) are widely used in both manufacturing and consumer products, but their potential health hazards remain unclear. The objective of this study was to survey workplace exposure levels and health effects of workers exposed to nano-CaCO3. Personal and area sampling, as well as real-time and dust monitoring, were performed to characterize mass exposure, particle size distribution, and particle number exposure. A total of 56 workers (28 exposed workers and 28 unexposed controls) were studied in a cross-sectional study. They completed physical examinations, spirometry, and digital radiography. The results showed that the gravimetric nano-CaCO3 concentration was 5.264 ± 6.987 mg/m3 (0.037-22.192 mg/m3) at the workplace, and 3.577 ± 2.065 mg/m3 (2.042-8.161 mg/m3) in the breathing zone of the exposed workers. The particle number concentrations ranged from 8193 to 39 621 particles/cm3 with a size range of 30-150 nm. The process of packing had the highest gravimetric and particle number concentrations. The particle number concentration positively correlated with gravimetric concentrations of nano-CaCO3. The levels of hemoglobin, creatine phosphokinase (CK), lactate dehydrogenase, and high-density lipoprotein cholesterol (HDL-C) in the nano-CaCO3 exposure group increased significantly, but the white blood cell count (WBC), Complement 3 (C3), total protein (TP), uric acid, and creatinine (CREA) all decreased significantly. The prevalence rate of pulmonary hypofunction was significantly higher (p = 0.037), and the levels of vital capacity (VC), forced vital capacity (FVC), forced expiratory volume in one second (FEV1), FEV1/FVC, peak expiratory flow and forced expiratory flow 25% (FEF 25%), FEF 25-75% were negatively correlated with gravimetric concentrations of nano-CaCO3 (p < 0.05). Logistic analysis showed that nano-CaCO3 exposure level was associated with pulmonary hypofunction (p = 0.005). Meanwhile, a dose-effect relationship was found between the accumulated gravimetric concentrations of nano-CaCO3 and the prevalence rate of pulmonary hypofunction (p = 0.048). In conclusion, long-term and high-level nano-CaCO3 exposure can induce pulmonary hypofunction in workers. Thus, lung function examination is suggested for occupational populations with nano-CaCO3 exposure. Furthermore, future health protection efforts should focus on senior workers with accumulation effects of nano-CaCO3 exposure.


Asunto(s)
Carbonato de Calcio/toxicidad , Pulmón/efectos de los fármacos , Nanoestructuras/toxicidad , Exposición Profesional/efectos adversos , Adulto , Estudios Transversales , Femenino , Humanos , Pulmón/fisiología , Masculino , Persona de Mediana Edad
13.
Sci Rep ; 6: 24471, 2016 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-27074985

RESUMEN

A novel ZnO@Ag@Polypyrrole nano-hybrid composite has been synthesized with a one-step approach, in which silver-ammonia complex ion serves as oxidant to polymerize the pyrrole monomer. X-ray diffraction (XRD) and infrared spectroscopy (IR) show the existence of metallic silver and polypyrrole. The structure of nano-hybrid composites are characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM), which demonstrates that the surface of ZnO is decorated with nano silver grain coated with polypyrrole. When evaluated as anode material, the silver grain and polypyrrole layer not only suppress the dissolution of discharge product, but also helps to uniform electrodeposition due to substrate effect and its good conductivity, thus shows better cycling performance than bare ZnO electrode does.

15.
Int J Mol Sci ; 12(3): 1756-66, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21673921

RESUMEN

A clean-route synthesis of Zn-Al-hydrotalcites (Zn-Al-LDHs) using zinc oxide and sodium aluminate solution has been developed. The as-obtained materials were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM). The effects of metal ions at different molar ratios on the performance of hydrotalcites were discussed. The results showed that the Zn-Al-hydrotalcites can be successfully synthesized at three different Zn/Al ratios of 3:1, 2:1 and 1:1. Thermal aging tests of polyvinyl chloride (PVC) mixed with Zn-Al-LDHs, calcium stearate (CaSt(2)) and ß-diketone were carried out in a thermal aging test box by observing the color change. The results showed that Zn-Al-LDHs can not only enhance the stability of PVC significantly due to the improved capacity of HCl-adsorption but also increase the initial stability and ensure good-initial coloring due to the presence of the Zn element. The effects of various amounts of Zn-Al-LDHs, CaSt(2) and ß-diketone on the thermal stability of PVC were discussed. The optimum composition was determined to be 0.1 g Zn-Al-LDHs, 0.15 g CaSt(2) and 0.25 g ß-diketone in 5 g PVC.


Asunto(s)
Hidróxido de Aluminio/química , Aluminio/química , Cetonas/química , Hidróxido de Magnesio/química , Cloruro de Polivinilo/química , Ácidos Esteáricos/química , Zinc/química , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA