Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 376
Filtrar
1.
J Environ Sci (China) ; 148: 79-87, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39095203

RESUMEN

Furniture is identified as a vital volatile organic compound (VOC) emission source in the indoor environment. Leather has become the most common raw and auxiliary fabric material for upholstered furniture, particularly with extensive consumption in sofas, due to its abundant resources and efficient functions. Despite being widely traded across the world, little research has been conducted on the VOCs released by leather materials and their health risk assessment in the indoor environment. Accordingly, this study investigated the VOC emissions of leather with different grades and the health risk of the inhalation exposure. Based on the ultra-fast gas phase electronic nose (EN) and GC-FID/Qtof, the substantial emissions of aliphatic aldehyde ketones (Aks), particularly hexanal, appear to be the cause of off-flavor in medium and low grade (MG and LG) sofa leathers. The health risk assessment indicated that leather materials barely pose non-carcinogenic and carcinogenic effects to residents. Given the abundance of VOC sources and the accumulation of health risks in the indoor environment, more stringent specifications concerning qualitative and quantitative content should be extended to provide VOC treatment basic for the manufacturing industry and obtain better indoor air quality.


Asunto(s)
Contaminación del Aire Interior , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/análisis , Contaminación del Aire Interior/análisis , Contaminación del Aire Interior/estadística & datos numéricos , Medición de Riesgo , Monitoreo del Ambiente , Contaminantes Atmosféricos/análisis , Humanos , Diseño Interior y Mobiliario , Exposición por Inhalación/análisis , Exposición por Inhalación/estadística & datos numéricos , Textiles/análisis
3.
Chem Sci ; 15(30): 12047-12057, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39092092

RESUMEN

Electricity-driven oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA) is a highly attractive strategy for biomass transformation. However, achieving industrial-grade current densities remains a great challenge. Herein, by modulating the water content in a solvothermal system, Ni3S2/NF with stabilized and shorter Ni-S bonds as well as a tunable coordination environment of Ni sites was fabricated. The prepared Ni3S2/NF was highly efficient for electrocatalytic oxidation of HMF to produce FDCA, and the FDCA yield and Faraday efficiency could reach 98.8% and 97.6% at the HMF complete conversion. More importantly, an industrial-grade current density of 1000 mA cm-2 could be achieved at a potential of only 1.45 V vs. RHE for HMFOR and the current density could exceed 500 mA cm-2 with other bio-based compounds as the reactants. The excellent performance of Ni3S2/NF originated from the shorter Ni-S bonds and its better electrochemical properties, which significantly promoted the dehydrogenation step of oxidizing HMF. Besides, the gram-scale FDCA production could be realized on Ni3S2/NF in a MEA reactor. This work provides a robust electrocatalyst with high potential for practical applications for the electrocatalytic oxidation of biomass-derived compounds.

4.
Adv Sci (Weinh) ; : e2403724, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39054638

RESUMEN

Natural polymer-derived nanofibrils have gained significant interest in diverse fields. However, production of bio-nanofibrils with the hierarchical structures such as fibrillar structures and crystalline features remains a great challenge. Herein, an all-natural strategy for simple, green, and scalable top-down exfoliation silk nanofibrils (SNFs) in novel renewable deep eutectic solvent (DES) composed by amino acids and D-sorbitol is innovatively developed. The DES-exfoliated SNFs with a controllable fibrillar structures and intact crystalline features, novelty preserving the hierarchical structure of natural silk fibers. Owing to the amphiphilic nature, the DES-exfoliated SNFs show excellent capacity of assisting the exfoliation of several 2D-layered materials, i.e., h-BN, MoS2, and WS2. More importantly, the SNFs-assisted dispersion of BNNSs with a concentration of 59.3% can be employed to construct SNFs/BNNSs nanocomposite membranes with excellent mechanical properties (tensile strength of 416.7 MPa, tensile modulus of 3.86 GPa and toughness of 1295.4 KJ·m-3) and thermal conductivity (in-plane thermal conductivity coefficient of 3.84 W·m-1·K-1), enabling it to possess superior cooling efficiency compared with the commercial silicone pad.

5.
J Transl Med ; 22(1): 710, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080755

RESUMEN

BACKGROUND: Myopia is one of the most common eye diseases in children and adolescents worldwide, and scleral remodeling plays a role in myopia progression. However, the identity of the initiating factors and signaling pathways that induce myopia-associated scleral remodeling is still unclear. This study aimed to identify biomarkers of scleral remodeling to elucidate the pathogenesis of myopia. METHODS: The gene expression omnibus (GEO) and comparative toxicogenomics database (CTD) mining were used to identify the miRNA-mRNA regulatory network related to scleral remodeling in myopia. Real-time quantitative PCR (RT-qPCR), Western blot, immunofluorescence, H&E staining, Masson staining, and flow cytometry were used to detect the changes in the FOXO signaling pathway, fibrosis, apoptosis, cell cycle, and other related factors in scleral remodeling. RESULTS: miR-15b-5p/miR-379-3p can regulate the FOXO signaling pathway. Confirmatory studies confirmed that the axial length of the eye was significantly increased, the scleral thickness was thinner, the levels of miR-15b-5p, miR-379-3p, PTEN, p-PTEN, FOXO3a, cyclin-dependent kinase (CDK) inhibitor 1B (CDKN1B) were increased, and the levels of IGF1R were decreased in Len-induced myopia (LIM) group. CDK2, cyclin D1 (CCND1), and cell cycle block assessed by flow cytometry indicated G1/S cell cycle arrest in myopic sclera. The increase in BAX level and the decrease in BCL-2 level indicated enhanced apoptosis of the myopic sclera. In addition, we found that the levels of transforming growth factor-ß1 (TGF-ß1), collagen type 1 (COL-1), and α-smooth muscle actin (α-SMA) were decreased, suggesting scleral remodeling occurred in myopia. CONCLUSIONS: miR-15b-5p/miR-379-3p can regulate the scleral cell cycle and apoptosis through the IGF1R/PTEN/FOXO signaling pathway, thereby promoting scleral remodeling in myopia progression.


Asunto(s)
Apoptosis , Ciclo Celular , Factores de Transcripción Forkhead , MicroARNs , Miopía , Esclerótica , Transducción de Señal , Animales , Apoptosis/genética , Secuencia de Bases , Ciclo Celular/genética , Modelos Animales de Enfermedad , Factores de Transcripción Forkhead/metabolismo , Factores de Transcripción Forkhead/genética , MicroARNs/genética , MicroARNs/metabolismo , Miopía/genética , Miopía/patología , Miopía/metabolismo , Esclerótica/patología , Esclerótica/metabolismo
6.
Arthritis Rheumatol ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965708

RESUMEN

OBJECTIVE: Autoinflammation and phospholipase C (PLC) γ2-associated antibody deficiency and immune dysregulation (APLAID) syndrome is an autoinflammatory disease caused by gain-of-function variants in PLCG2. This study investigates the pathogenic mechanism of a novel variant of PLCG2 in a patient with APLAID syndrome. METHODS: Whole-exome sequencing and Sanger sequencing were used to identify the pathogenic variant in the patient. Single-cell RNA sequencing, immunoblotting, luciferase assay, inositol monophosphate enzyme-linked immunosorbent assay, calcium flux assay, quantitative PCR, and immunoprecipitation were used to define inflammatory signatures and evaluate the effects of the PLCG2 variant on protein functionality and immune signaling. RESULTS: We identified a novel de novo variant, PLCG2 p.D993Y, in a patient with colitis, pansinusitis, skin rash, edema, recurrent respiratory infections, B-cell deficiencies, and hypogammaglobulinemia. The single-cell transcriptome revealed exacerbated inflammatory responses in the patient's peripheral blood mononuclear cells. Expression of the D993Y variant in HEK293T, COS-7, and PLCG2 knock-out THP-1 cell lines showed heightened PLCγ2 phosphorylation; elevated inositol-1,4,5-trisphosphate production and intracellular Ca2+ release; and activation of the MAPK, NF-κB, and NFAT signaling pathways compared with control-transfected cells. In vitro experiments indicated that the D993Y variant altered amino acid properties, disrupting the interaction between the catalytic and autoinhibitory domains of PLCγ2, resulting in PLCγ2 autoactivation. CONCLUSION: Our findings demonstrated that the PLCG2 D993Y variant is a gain-of-function mutation via impairing its autoinhibition, activating multiple inflammatory signaling pathways, thus leading to APLAID syndrome. This study further broadens the molecular underpinnings and phenotypic spectrum of PLCγ2-related disorders.

7.
J Hazard Mater ; 477: 135308, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39053070

RESUMEN

In the natural environment, a symphony of environmental factors including sunlight exposure, current fluctuations, sodium chloride concentrations, and sediment dynamics intertwine, potentially magnifying the impacts on the aging process of disposable face masks (DFMs), thus escalating environmental risks. Employing Regular Two-Level Factorial Design, the study scrutinized interactive impacts of ultraviolet radiation, sand abrasion, acetic acid exposure, sodium chloride levels, and mechanical agitation on mask aging. Aging mechanisms and environmental risks linked with DFMs were elucidated through two-dimensional correlation analyses and risk index method. Following a simulated aging duration of three months, a single mask exhibited the propensity to release a substantial quantity of microplastics, ranging from 38,800 ± 360 to 938,400 ± 529 particles, and heavy metals, with concentrations from 0.06 ± 0.02 µg/g (Pb) to 29.01 ± 1.83 µg/g (Zn). Besides, specific contaminants such as zinc ions (24.24 µg/g), chromium (VI) (4.20 µg/g), thallium (I) (0.92 µg/g), tetracycline (0.51 µg/g), and acenaphthene (1.73 µg/g) can be adsorbed significantly by aged masks. The study elucidates pivotal role of interactions between ultraviolet radiation and acetic acid exposure in exacerbating the environmental risks associated with masks, while emphasizing the pronounced influence of many other interactions. The research provides a comprehensive understanding of the intricate aging processes and ensuing environmental risks posed by DFMs, offering valuable insights essential for developing sustainable management strategies in aquatic ecosystems.


Asunto(s)
Máscaras , Rayos Ultravioleta , Microplásticos/toxicidad , Ácido Acético/química , Metales Pesados/análisis , Cloruro de Sodio/química , Factores de Tiempo , Equipos Desechables , Cromo/química , Cromo/análisis , Adsorción , Contaminantes Ambientales/toxicidad , Tetraciclina/química , Tetraciclina/análisis
8.
Macromol Biosci ; : e2400238, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38843881

RESUMEN

Controlling the growth of microbial consortia is of great significance in the biomedical field. Selective bacterial growth is achieved by fabricating silk inverse opal (SIO) scaffolds with varying pore sizes ranging from 0.3 to 4.5 µm. Pore size significantly influences the growth dynamics of bacteria in both single and mixed-strain cultures. Specially, the SIO-4.5 µm scaffold is observed to be more favorable for cultivating S. aureus, whereas the SIO-0.3 µm scaffold is more suitable for cultivating E. coli and P. aeruginosa. By adjusting the secondary conformation of silk fibroin, the stiffness of the SIO substrate will be altered, which results in the increase of bacteria on the SIO by 16 times compared with that on the silk fibroin film. Manipulating the pore size allows for the adjustment of the S. aureus to P. aeruginosa ratio from 0.8 to 9.3, highlighting the potential of this approach in regulating bacterial culture.

9.
Cell Biochem Biophys ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38913283

RESUMEN

The occurrence and development of ophthalmic diseases are related to the dysfunction of eye tissues. Ubiquitin is an important form of protein post-translational modification, which plays an essential role in the occurrence and development of diseases through specific modification of target proteins. Ubiquitination governs a variety of intracellular signal transduction processes, including proteasome degradation, DNA damage repair, and cell cycle progression. Studies have found that ubiquitin can play a role in eye diseases such as cataracts, glaucoma, keratopathy, retinopathy, and eye tumors. In this paper, the role of protein ubiquitination in eye diseases was reviewed.

10.
Sensors (Basel) ; 24(10)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38793823

RESUMEN

In the sixth generation (6G) era, intelligent machine network (IMN) applications, such as intelligent transportation, require collaborative machines with communication, sensing, and computation (CSC) capabilities. This article proposes an integrated communication, sensing, and computation (ICSAC) framework for 6G to achieve the reciprocity among CSC functions to enhance the reliability and latency of communication, accuracy and timeliness of sensing information acquisition, and privacy and security of computing to realize the IMN applications. Specifically, the sensing and communication functions can merge into unified platforms using the same transmit signals, and the acquired real-time sensing information can be exploited as prior information for intelligent algorithms to enhance the performance of communication networks. This is called the computing-empowered integrated sensing and communications (ISAC) reciprocity. Such reciprocity can further improve the performance of distributed computation with the assistance of networked sensing capability, which is named the sensing-empowered integrated communications and computation (ICAC) reciprocity. The above ISAC and ICAC reciprocities can enhance each other iteratively and finally lead to the ICSAC reciprocity. To achieve these reciprocities, we explore the potential enabling technologies for the ICSAC framework. Finally, we present the evaluation results of crucial enabling technologies to show the feasibility of the ICSAC framework.

11.
Entropy (Basel) ; 26(5)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38785643

RESUMEN

In this paper, the problem of joint transmission and computation resource allocation for a multi-user probabilistic semantic communication (PSC) network is investigated. In the considered model, users employ semantic information extraction techniques to compress their large-sized data before transmitting them to a multi-antenna base station (BS). Our model represents large-sized data through substantial knowledge graphs, utilizing shared probability graphs between the users and the BS for efficient semantic compression. The resource allocation problem is formulated as an optimization problem with the objective of maximizing the sum of the equivalent rate of all users, considering the total power budget and semantic resource limit constraints. The computation load considered in the PSC network is formulated as a non-smooth piecewise function with respect to the semantic compression ratio. To tackle this non-convex non-smooth optimization challenge, a three-stage algorithm is proposed, where the solutions for the received beamforming matrix of the BS, the transmit power of each user, and the semantic compression ratio of each user are obtained stage by stage. The numerical results validate the effectiveness of our proposed scheme.

12.
J Transl Med ; 22(1): 511, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38807184

RESUMEN

BACKGROUND: Myopia is one of the eye diseases that can damage the vision of young people. This study aimed to explore the protective role of miR-92b-3p against DNA damage and apoptosis in retinal tissues of negative lens-induced myopic (LIM) guinea pigs by targeting BTG2. METHODS: Biometric measurements of ocular parameters, flash electroretinogram (FERG), and retinal thickness (RT) were performed after miR-92b-3p intravitreal injection in LIM guinea pigs. The apoptotic rate was detected by Annexin V-FITC/PI double staining, and the change in mitochondrial membrane potential was measured by JC-1 staining. Retinal apoptosis and expression of p53, BTG2, and CDK2 were explored by TdT-mediated dUTP-biotin nick labeling (TUNEL) and immunofluorescence staining assays, respectively. BTG2 and its upstream and downstream molecules at gene and protein levels in retinal tissues were measured by real-time quantitative PCR (qPCR) and Western blotting. RESULTS: Compared with normal controls (NC), the ocular axial length of LIM guinea pig significantly increased, whereas refraction decreased. Meanwhile, dMax-a and -b wave amplitudes of ERG declined, retinal thickness was decreased, the number of apoptotic cells and apoptotic rate in LIM eyes was exaggerated, and the mitochondrial membrane potential significantly decreased. In addition, results of qPCR and Western blot assays showed that the expression levels of p53, BTG2, CDK2, and BAX in LIM guinea pigs were higher than the levels of the NC group, whereas the BCL-2 expression level was decreased. By contrast, the miR-92b-3p intravitreal injection in LIM guinea pigs could significantly inhibit axial elongation, alleviate DNA damage and apoptosis, and thus protect guinea pigs against myopia. CONCLUSION: In conclusion, p53 and BTG2 were activated in the retinal tissue of myopic guinea pigs, and the activated BTG2 could elevate the expression of CDK2 and BAX, and attenuate the expression of BCL-2, which in turn promote apoptosis and eventually lead to retinal thinning and impaired visual function in myopic guinea pigs. The miR-92b-3p intravitreal injection can attenuate the elongation of ocular length and retinal thickness, and inhibit the CDK2, BAX, and p53 expression by targeting BTG2, thereby ameliorating DNA damage and apoptosis in LIM guinea pigs and protecting ocular tissues.


Asunto(s)
Apoptosis , Daño del ADN , MicroARNs , Miopía , Retina , Animales , Cobayas , MicroARNs/genética , MicroARNs/metabolismo , Retina/patología , Retina/metabolismo , Miopía/metabolismo , Miopía/genética , Miopía/patología , Potencial de la Membrana Mitocondrial , Secuencia de Bases , Proteínas Inmediatas-Precoces/metabolismo , Proteínas Inmediatas-Precoces/genética , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Electrorretinografía , Modelos Animales de Enfermedad
13.
Mol Ecol ; 33(12): e17369, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38713101

RESUMEN

As modern humans ventured out of Africa and dispersed around the world, they faced novel environmental challenges that led to geographic adaptations including skin colour. Over the long history of human evolution, skin colour has changed dramatically, showing tremendous diversity across different geographical regions, for example, the majority of individuals from the expansive lands of Africa have darker skin, whereas the majority of people from Eurasia exhibit lighter skin. What adaptations did lighter skin confer upon modern humans as they migrated from Africa to Eurasia? What genetic mechanisms underlie the diversity of skin colour observed in different populations? In recent years, scientists have gradually gained a deeper understanding of the interactions between pigmentation gene and skin colour through population-based genomic studies of different groups around the world, particularly in East Asia and Africa. In this review, we summarize our current understanding of 26 skin colour-related pigmentation genes and 48 SNPs that influence skin colour. Important pigmentation genes across three major populations are described in detail: MFSD12, SLC24A5, PDPK1 and DDB1/CYB561A3/TMEM138 influence skin colour in African populations; OCA2, KITLG, SLC24A2, GNPAT and PAH are key to the evolution of skin pigmentation in East Asian populations; and SLC24A5, SLC45A2, TYR, TYRP1, ASIP, MC1R and IRF4 significantly contribute to the lightening of skin colour in European populations. We summarized recent findings in genomic studies of skin colour in populations that implicate diverse geographic environments, local adaptation among populations, gene flow and multi-gene interactions as factors influencing skin colour diversity.


Asunto(s)
Polimorfismo de Nucleótido Simple , Pigmentación de la Piel , Pigmentación de la Piel/genética , Humanos , Fenotipo , Evolución Biológica , Adaptación Fisiológica/genética , Genética de Población , África , Adaptación Biológica/genética
14.
Environ Sci Pollut Res Int ; 31(25): 36716-36727, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38753237

RESUMEN

Thermophilic anaerobic digestion (TAD) represents a promising biotechnology for both methane energy production and waste stream treatment. However, numerous critical microorganisms and their metabolic characteristics involved in this process remain unidentified due to the limitations of culturable isolates. This study investigated the phylogenetic composition and potential metabolic traits of bacteria and methanogenic archaea in a TAD system using culture-independent metagenomics. Predominant microorganisms identified in the stable phase of TAD included hydrogenotrophic methanogens (Methanothermobacter and Methanosarcina) and hydrogen-producing bacteria (Coprothermobacter, Acetomicrobium, and Defluviitoga). Nine major metagenome-assembled genomes (MAGs) associated with the dominant genera were selected to infer their metabolic potentials. Genes related to thermal resistance were widely found in all nine major MAGs, such as the molecular chaperone genes, Clp protease gene, and RNA polymerase genes, which may contribute to their predominance under thermophilic condition. Thermophilic temperatures may increase the hydrogen partial pressure of Coprothermobacter, Acetomicrobium, and Defluviitoga, subsequently altering the primary methanogenesis pathway from acetoclastic pathway to hydrogenotrophic pathway in the TAD. Consequently, genes encoding the hydrogenotrophic methanogenesis pathway were the most abundant in the recovered archaeal MAGs. The potential interaction between hydrogen-producing bacteria and hydrogenotrophic methanogens may play critical roles in TAD processes.


Asunto(s)
Archaea , Bacterias , Metano , Archaea/genética , Archaea/metabolismo , Bacterias/metabolismo , Bacterias/genética , Anaerobiosis , Metano/metabolismo , Filogenia , Reactores Biológicos/microbiología
16.
Heliyon ; 10(8): e29715, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38660258

RESUMEN

In recent years, the prevalence of myopia has gradually increased, and it has become a significant global public health problem in the 21st century, posing a serious challenge to human eye health. Currently, it is confirmed that the development of myopia is attributed to the combined action of genes and environmental factors. Thus, elucidating the risk factors and pathogenesis of myopia is of great significance for the prevention and control of myopia. To elucidate the impact of gene-environment interaction on myopia, we used the Pubmed database to search for literature related to myopia. Search terms are as follows: myopia, genes, environmental factors, gene-environment interaction, and treatment. This paper reviews the effects of gene and environmental interaction on myopia.

17.
Sci Rep ; 14(1): 9584, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671012

RESUMEN

The rapid advancement of modern communication technologies necessitates the development of generalized multi-access frameworks and the continuous implementation of rate splitting, augmented with semantic awareness. This trend, coupled with the mounting pressure on wireless services, underscores the need for intelligent approaches to radio signal propagation. In response to these challenges, intelligent reflecting surfaces (IRS) have garnered significant attention for their ability to control data transmission systems in a goal-oriented and dynamic manner. This innovation is largely attributed to equitable resource allocation and the dynamic enhancement of network performance. However, the integration of rate-splitting multi-access (RSMA) architecture with semantic considerations imposes stringent requirements on IRS platforms to ensure seamless connectivity and broad coverage for a diverse user base without interference. Semantic communications hinge on a knowledge base-a centralized repository of integrated information related to the transmitted data-which becomes critically important in multi-antenna scenarios. This article proposes a novel set of design strategies for RSMA-IRS systems, enabled by reconfigurable intelligent surface synergizing with semantic communication principles. An experimental analysis is presented, demonstrating the effectiveness of these design guidelines in the context of Beyond 5G/6G communication systems. The RSMA-IRS model, infused with semantic communication, offers a promising solution for future wireless networks. Performance evaluations of the proposed approach reveal that, despite an increase in the number of users, the delay in the RSMA-IRS framework incorporating semantics is 2.94% less than that of a RSMA-IRS system without semantic integration.

18.
Adv Sci (Weinh) ; 11(25): e2401034, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38647393

RESUMEN

High-entropy oxides (HEOs) have garnered significant attention within the realm of rechargeable batteries owing to their distinctive advantages, which encompass diverse structural attributes, customizable compositions, entropy-driven stabilization effects, and remarkable superionic conductivity. Despite the brilliance of HEOs in energy conversion and storage applications, there is still lacking a comprehensive review for both entry-level and experienced researchers, which succinctly encapsulates the present status and the challenges inherent to HEOs, spanning structural features, intrinsic properties, prevalent synthetic methodologies, and diversified applications in rechargeable batteries. Within this review, the endeavor is to distill the structural characteristics, ionic conductivity, and entropy stabilization effects, explore the practical applications of HEOs in the realm of rechargeable batteries (lithium-ion, sodium-ion, and lithium-sulfur batteries), including anode and cathode materials, electrolytes, and electrocatalysts. The review seeks to furnish an overview of the evolving landscape of HEOs-based cell component materials, shedding light on the progress made and the hurdles encountered, as well as serving as the guidance for HEOs compositions design and optimization strategy to enhance the reversible structural stability, electrical properties, and electrochemical performance of rechargeable batteries in the realm of energy storage and conversion.

19.
Macromol Rapid Commun ; 45(11): e2300744, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38480512

RESUMEN

Highly porous light absorbers are fabricated based on polypyrrole (PPy)-coated carbon nanotube (CNT). Carbon nanotube sponge (CNTS) or carbon nanotube array (CNTA) with three-dimensional (3D) network structure is the framework of porous light absorbers. Both PPy@CNTS and PPy@CNTA composites exhibit excellent light absorption of the full solar spectrum. The CNTS and CNTA with porous structures have extremely large effective surface area for light absorption and for water evaporation that has great practical benefit to the solar-driven vapor generation. The PPy layer on CNT sidewalls significantly improves the hydrophilicity of porous CNTS and CNTA. The good wettability of water on CNT sidewalls makes water transport in porous CNT materials highly efficient. The PPy@CNTS and PPy@CNTA light absorbers achieve high water evaporation rates of 3.35 and 3.41 kg m-2 h-1, respectively, under 1-sun radiation. The orientation of nano channels in CNTA-based light absorbers also plays an important role in the solar-driven vapor generation. The water transport and vapor escape are more efficient in CNTA-based light absorbers as compared to the CNTS-based light absorbers due to the relatively short path for the water transport and the vapor escape in CNTA-based light absorbers.


Asunto(s)
Nanotubos de Carbono , Polímeros , Pirroles , Nanotubos de Carbono/química , Polímeros/química , Pirroles/química , Energía Solar , Luz Solar , Porosidad , Agua/química , Propiedades de Superficie , Tamaño de la Partícula
20.
J Genet Genomics ; 51(7): 703-713, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38461943

RESUMEN

The evolution of light-skin pigmentation among Eurasians is considered as an adaptation to the high-latitude environments. East Asians are ideal populations for studying skin color evolution because of the complex environment of East Asia. Here, we report a strong selection signal for the pigmentation gene phenylalanine hydroxylase (PAH) in light-skinned Han Chinese individuals. The intron mutation rs10778203 in PAH is enriched in East Asians and is significantly associated with skin color of the back of the hand in Han Chinese males (P < 0.05). In vitro luciferase and transcription factor binding assays show that the ancestral allele of rs10778203 could bind to SMAD2 and has a significant enhancer activity for PAH. However, the derived T allele (the major allele in East Asians) of rs10778203 decreases the binding activity of transcription factors and enhancer activity. Meanwhile, the derived T allele of rs10778203 shows a weaker ultraviolet radiation response in A375 cells and zebrafish embryos. Furthermore, rs10778203 decreases melanin production in transgenic zebrafish embryos after ultraviolet B (UVB) treatment. Collectively, PAH is a potential pigmentation gene that regulates skin tanning ability. Natural selection has enriched the adaptive allele, resulting in weakened tanning ability in East Asians, suggesting a unique genetic mechanism for evolutionary skin lightening in East Asians.


Asunto(s)
Pueblos del Este de Asia , Pigmentación de la Piel , Animales , Humanos , Masculino , Alelos , Animales Modificados Genéticamente , Evolución Biológica , Pueblos del Este de Asia/genética , Melaninas/metabolismo , Melaninas/genética , Mutación , Fenilalanina Hidroxilasa/genética , Fenilalanina Hidroxilasa/metabolismo , Polimorfismo de Nucleótido Simple , Selección Genética , Pigmentación de la Piel/genética , Pigmentación de la Piel/efectos de la radiación , Rayos Ultravioleta/efectos adversos , Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...