Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
1.
Arch Dermatol Res ; 316(7): 474, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39007937

RESUMEN

Psoriasis, a chronic and easily recurring inflammatory skin disease, causes a great economic burden to the patient's family because the etiology and mechanism are still unclear and the treatment cycle is long. In this study, the function and related mechanisms of Momordin Ic in psoriasis were investigated. The IMQ-induced mouse psoriasis model was constructed. The protective effects of different doses of Momordin Ic on psoriasis skin damage in mice were detected by PASI score, HE staining and Ki-67 staining. A psoriasis-like keratinocyte model was established at the cellular level using M5 (IL-17A, IL-22, oncostatin M, IL-1α, and TNF-α) triggered HaCaT. The effects of Momordin Ic upon HaCaT cell biological behavior were examined using MTT and CCK-8 assays. In terms of mechanism, the expression level of each inflammatory factor was assessed using IHC staining and/or ELISA, qRT-PCR, the expression of oxidative stress-related indicators was detected biochemically, and western blot was performed to detect the levels of key proteins of the Wnt signaling and VEGF. As the results shown,  at the in vivo level, Momordin Ic significantly alleviated skin damage, reduced PASI score and inhibited hyperproliferation of keratinized cells in psoriasis mice. At the cellular level, Momordin Ic also significantly reversed M5-induced hyperproliferation of HaCaT keratinocytes. In terms of mechanism, Momordin Ic significantly inhibited the IL-23/IL-17 axis, dramatically elevated the levels of intracellular antioxidants including SOD, GSH-Px, and CAT, and significantly down-regulated the levels of the indicator of oxidative damage, malondialdehyde (MDA). In addition, Momordin Ic also significantly inhibited the level of ß-catenin, a pivotal protein of the Wnt signaling, C-Myc, a target gene of the Wnt signaling, and VEGF, a critical protein of angiogenesis. In conclusion, Momordin Ic can be involved in the skin-protective effects of psoriasis by multiple mechanisms, including inhibition of the Wnt signaling pathway and the IL-23/IL-17 axis, and suppression of oxidative damageand VEGF expression. Momordin Ic has been proven to be an underlying therapeutic drug for the treatment of psoriasis.


Asunto(s)
Modelos Animales de Enfermedad , Interleucina-17 , Interleucina-23 , Queratinocitos , Psoriasis , Piel , Vía de Señalización Wnt , Animales , Psoriasis/tratamiento farmacológico , Psoriasis/patología , Psoriasis/inducido químicamente , Psoriasis/inmunología , Interleucina-17/metabolismo , Ratones , Humanos , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Interleucina-23/metabolismo , Piel/patología , Piel/efectos de los fármacos , Piel/metabolismo , Vía de Señalización Wnt/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Células HaCaT , Imiquimod , Ratones Endogámicos BALB C , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Proliferación Celular/efectos de los fármacos
2.
J Proteome Res ; 23(7): 2608-2618, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38907724

RESUMEN

Cell-cell interactions, which allow cells to communicate with each other through molecules in their microenvironment, are critical for the growth, health, and functions of cells. Previous studies show that drug-resistant cells can interact with drug-sensitive cells to elevate their drug resistance level, which is partially responsible for cancer recurrence. Studying protein targets and pathways involved in cell-cell communication provides essential information for fundamental cell biology studies and therapeutics of human diseases. In the current studies, we performed direct coculture and indirect coculture of drug-resistant and drug-sensitive cell lines, aiming to investigate intracellular proteins responsible for cell communication. Comparative studies were carried out using monoculture cells. Shotgun bottom-up proteomics results indicate that the P53 signaling pathway has a strong association with drug resistance mechanisms, and multiple TP53-related proteins were upregulated in both direct and indirect coculture systems. In addition, cell-cell communication pathways, including the phagosome and the HIF-signaling pathway, contribute to both direct and indirect coculture systems. Consequently, AK3 and H3-3A proteins were identified as potential targets for cell-cell interactions that are relevant to drug resistance mechanisms. We propose that the P53 signaling pathway, in which mitochondrial proteins play an important role, is responsible for inducing drug resistance through communication between drug-resistant and drug-sensitive cancer cells.


Asunto(s)
Comunicación Celular , Técnicas de Cocultivo , Resistencia a Antineoplásicos , Proteómica , Transducción de Señal , Proteína p53 Supresora de Tumor , Humanos , Proteómica/métodos , Comunicación Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Línea Celular Tumoral , Proteína p53 Supresora de Tumor/metabolismo , Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico
3.
Front Microbiol ; 15: 1374911, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38912351

RESUMEN

Mastitis is commonly recognized as a localized inflammatory udder disease induced by the infiltration of exogenous pathogens. In the present study, our objective was to discern fecal and milk variations in both microbiota composition and metabolite profiles among three distinct groups of cows: healthy cows, cows with subclinical mastitis and cows with clinical mastitis. The fecal microbial community of cows with clinical mastitis was significantly less rich and diverse than the one harbored by healthy cows. In parallel, mastitis caused a strong disturbance in milk microbiota. Metabolomic profiles showed that eleven and twenty-eight molecules exhibited significant differences among the three groups in feces and milk, respectively. Similarly, to microbiota profile, milk metabolome was affected by mastitis more extensively than fecal metabolome, with particular reference to amino acids and sugars. Pathway analysis revealed that amino acids metabolism and energy metabolism could be considered as the main pathways altered by mastitis. These findings underscore the notable distinctions of fecal and milk samples among groups, from microbiome and metabolomic points of view. This observation stands to enhance our comprehension of mastitis in dairy cows.

4.
Food Chem ; 456: 139887, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38865819

RESUMEN

Fennel essential oil (FEO) a natural spice that has versatile biological activities. However, the direct use of FEO is limited due to its water insolubility and poor stability. Chilled pork is prone to spoilage during storage. To solve these problems, this study aimed to prepare an inclusion complex (IC) of FEO with hydroxypropyl-ß-cyclodextrin via co-precipitation and apply it to the preservation of chilled pork. Results indicated that the optimal parameters were encapsulating temperature 37 °C, wall-core ratio 14:1 g/mL, stirring speed 600 r/min, and encapsulating time 240 min, obtaining an encapsulation efficiency of 83.75%. The results of scanning electron microscopy, Fourier transform infra-red spectroscopy, and nuclear magnetic resonance demonstrated the successful preparation of IC. The release of FEO from IC was controllable through adjusting the different temperatures and relative humidities. Furthermore, IC effectively delayed the spoilage of chilled pork and extended its shelf life by 6 days at 4 °C.

5.
Foods ; 13(11)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38890957

RESUMEN

Kiwi wine (KW) is tipically made by fermenting juice from peeled kiwifruit, resulting in the disposal of peel and pomace as by-products. However, the peel contains various beneficial compounds, like phenols and flavonoids. Since the peel is edible and rich in these compounds, incorporating it into the fermentation process of KW presents a potential solution to minimize by-product waste. This study compared the aroma and taste profiles of KW from peeled (PKW) and unpeeled (UKW) kiwifruits by combining intelligent sensory technology, GC-MS, and 1H-NMR. Focusing on aroma profiles, 75 volatile organic compounds (VOCs) were identified in KW fermented with peel, and 73 VOCs in KW without peel, with 62 VOCs common to both. Among these compounds, rose oxide, D-citronellol, and bornylene were more abundant in UKW, while hexyl acetate, isoamyl acetate, and 2,4,5-trichlorobenzene were significantly higher in PKW. For taste profiles, E-tongue analysis revealed differences in the taste profiles of KW from the two sources. A total of 74 molecules were characterized using 1H-NMR. UKW exhibited significantly higher levels of tartrate, galactarate, N-acetylserotonin, 4-hydroxy-3-methoxymandelate, fumarate, and N-acetylglycine, along with a significantly lower level of oxypurinol compared to PKW. This study seeks to develop the theoretical understanding of the fermentation of kiwifruit with peel in sight of the utilization of the whole fruit for KW production, to increase the economic value of kiwifruit production.

6.
J Agric Food Chem ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38836763

RESUMEN

Mung bean contains up to 32.6% protein and is one of the great sources of plant-based protein. Because many allergens also function as defense-related proteins, it is important to determine their abundance levels in the high-yielding, disease-resistant cultivars. In this study, for the first time, we compared the seed proteome of high-yielding mung bean cultivars developed by a conventional breeding approach. Using a label-free quantitative proteomic platform, we successfully identified and quantified a total of 1373 proteins. Comparative analysis between the high-yielding disease-resistant cultivar (MC5) and the other three cultivars showed that a total of 69 common proteins were significantly altered in their abundances across all cultivars. Bioinformatic analysis of these altered proteins demonstrated that PDF1 (a defensin-like protein) exhibited high sequence similarity and epitope matching with the established peanut allergens, indicating a potential mung bean allergen that showed a cultivar-specific response. Conversely, known mung bean allergen proteins such as PR-2/PR-10 (Vig r 1), Vig r 2, Vig r 4, LTP1, ß-conglycinin, and glycinin G4 showed no alternation in the MC5 compared to other cultivars. Taken together, our findings suggest that the known allergen profiles may not be impacted by the conventional plant breeding method to develop improved mung bean cultivars.

7.
Cell Commun Signal ; 22(1): 249, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693584

RESUMEN

Copper plays vital roles in numerous cellular processes and its imbalance can lead to oxidative stress and dysfunction. Recent research has unveiled a unique form of copper-induced cell death, termed cuproptosis, which differs from known cell death mechanisms. This process involves the interaction of copper with lipoylated tricarboxylic acid cycle enzymes, causing protein aggregation and cell death. Recently, a growing number of studies have explored the link between cuproptosis and cancer development. This review comprehensively examines the systemic and cellular metabolism of copper, including tumor-related signaling pathways influenced by copper. It delves into the discovery and mechanisms of cuproptosis and its connection to various cancers. Additionally, the review suggests potential cancer treatments using copper ionophores that induce cuproptosis, in combination with small molecule drugs, for precision therapy in specific cancer types.


Asunto(s)
Cobre , Neoplasias , Humanos , Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Cobre/metabolismo , Animales , Transducción de Señal , Muerte Celular
8.
AMB Express ; 14(1): 35, 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38615116

RESUMEN

Endophytic bacteria are one of the symbiotic microbial groups closely related to host algae. However, less research on the endophytic bacteria of marine algae. In this study, the endophytic bacterial community of Sargassum thunbergii was investigated using the culture method and high-throughput sequencing. Thirty-nine endophytic bacterial strains, belonging to two phyla, five genera and sixteen species, were isolated, and Firmicutes, Bacillus and Metabacillus indicus were the dominant taxa at the phylum, genus and species level, respectively. High-throughput sequencing revealed 39 phyla and 574 genera of endophytic bacteria, and the dominant phylum was Proteobacteria, while the dominant genus was Ralstonia. The results also indicated that the endophytic bacteria of S. thunbergii included various groups with nitrogen fixation, salt tolerance, pollutant degradation, and antibacterial properties but also contained some pathogenic bacteria. Additionally, the endophytic bacterial community shared a large number of groups with the epiphytic bacteria and bacteria in the surrounding seawater, but the three groups of samples could be clustered separately. In conclusion, there are a variety of functional endophytic bacteria living in S. thunbergii, and the internal condition of algae is a selective factor for the formation of endophytic bacterial communities. This study enriched the database of endophytic bacteria in marine macroalgae, paving the way for further understanding of the interrelationships between endophytic bacteria, macroalgae, and the environment.

9.
Sci Total Environ ; 927: 172273, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38583625

RESUMEN

Firefighters are frequently exposed to a variety of chemicals formed from smoke, which pose a risk for numerous diseases, including cancer. Comparative urine proteome profiling could significantly improve our understanding of the early detection of potential cancer biomarkers. In this study, for the first time, we conducted a comparative protein profile analysis of 20 urine samples collected from ten real-life firefighters prior to and following emergency fire-induced smoke. Using a label-free quantitative proteomics platform, we identified and quantified 1325 unique protein groups, of which 45 proteins showed differential expressions in abundance in response to fire-smoke exposure (post) compared to the control (pre). Pathway analysis showed proteins associated with epithelium development (e.g., RHCG, HEG1, ADAMTSL2) and Alzheimer's disease (SORL1) were significantly increased in response to smoke exposure samples. A protein-protein-network study showed a possible link between these differentially abundant proteins and the known cancer gene (TP53). Moreover, a cross-comparison analysis revealed that seven proteins-ALDH1A1, APCS, POMC, COL2A1, RDX, DDAH2, and SDC4 overlapped with the previously published urine cancer proteome datasets, suggesting a potential cancer risk. Our findings demonstrated that the discovery proteomic platform is a promising analytical technique for identifying potential non-invasive biomarkers associated with fire-smoke exposure in firefighters that may be related to cancer.


Asunto(s)
Bomberos , Exposición Profesional , Proteoma , Humo , Humanos , Proyectos Piloto , Humo/efectos adversos , Masculino , Biomarcadores/orina , Adulto , Carcinógenos , Proteómica
10.
Front Microbiol ; 15: 1334918, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38559345

RESUMEN

Endophytic bacteria have a complex coevolutionary relationship with their host macroalgae. Dioecious macroalgae are important producers in marine ecosystems, but there is still a lack of research on how sex influences their endophytic bacteria. In this study, the endophytic bacterial communities in male and female S. thunbergii and their reproductive tissues (receptacles) were compared using culture methods and high-throughput sequencing. The endophytic bacterial communities detected by the two methods were different. Among the 78 isolated strains, the dominant phylum, genus, and species were Bacillota, Alkalihalobacillus, and Alkalihalobacillus algicola, respectively, in the algal bodies, while in the receptacles, they were Bacillota, Vibrio, and Vibrio alginolyticus. However, 24 phyla and 349 genera of endophytic bacteria were identified by high-throughput sequencing, and the dominant phylum and genus were Pseudomonadota and Sva0996_ Marine_ Group, respectively, in both the algal body and the receptacles. The two methods showed similar compositions of endophytic bacterial communities between the samples of different sexes, but the relative abundances of dominant and specific taxa were different. The high-throughput sequencing results showed more clearly that the sex of the host alga had an effect on its endophyte community assembly and a greater effect on the endophytic bacterial community in the receptacles. Moreover, most specific bacteria and predicted functional genes that differed between the samples from the males and females were related to metabolism, suggesting that metabolic differences are the main causes of sex differences in the endophytic bacterial community. Our research is the first to show that host sex contributes to the composition of endophytic bacterial communities in dioecious marine macroalgae. The results enrich the database of endophytic bacteria of dioecious marine macroalgae and pave the way for better understanding the assembly mechanism of the endophytic bacterial community of algae.

11.
Adv Med Sci ; 69(1): 167-175, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38521458

RESUMEN

PURPOSE: Psoriasis is a skin disease characterized by excessive proliferation, inflammation and oxidative stress in keratinocytes. The present study aimed to investigate the therapeutic effects of Dendrobium officinale polysaccharide (DOP) on keratinocyte psoriasis-like models. METHODS: The HaCaT keratinocyte inflammation models were induced by interleukin (IL)-22 or lipopolysaccharide (LPS), respectively, and oxidative stress damage within cells was elicited by H2O2 and treated using DOP. CCK-8 and EdU were carried out to detect cell proliferation. ELISA, qRT-PCR, and Western blot were conducted to measure the expression of pro-inflammatory cytokines IL17A, IL-23, IL1ß, tumor necrosis factor alpha (TNF-α), and IL-6. Reactive oxygen species (ROS) level in keratinocytes was detected by flow cytometry. Cell proliferation-associated proteins (PCNA, Ki67, Cyclin D1) and pathway proteins (p-AKT and AKT), and oxidative stress marker proteins (Nrf-2, CAT, SOD1) were detected by Western blot. RESULT: DOP did not affect the proliferation of normal keratinocytes, but DOP was able to inhibit the proliferative activity of IL-22-induced overproliferating keratinocytes and suppress the expression of proliferation-related factors PCNA, Ki67, and Cyclin D1 as well as the proliferation pathway p-AKT. In addition, DOP treatment was able to inhibit IL-22 and LPS-induced inflammation and H2O2-induced oxidative stress, including the expression of IL17A, IL-23, IL1ß, TNF-α, IL-6, and IL1ß, as well as the expression levels of intracellular ROS levels and cellular oxidative stress-related indicators SOD, MDA, CAT, Nrf-2 and SOD1. CONCLUSION: DOP inhibits keratinocyte hyperproliferation, inflammation and oxidative stress to improve the keratinocyte psoriasis-like state.


Asunto(s)
Proliferación Celular , Dendrobium , Inflamación , Queratinocitos , Estrés Oxidativo , Polisacáridos , Psoriasis , Estrés Oxidativo/efectos de los fármacos , Dendrobium/química , Humanos , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Proliferación Celular/efectos de los fármacos , Polisacáridos/farmacología , Inflamación/tratamiento farmacológico , Inflamación/patología , Inflamación/metabolismo , Psoriasis/tratamiento farmacológico , Psoriasis/patología , Psoriasis/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Citocinas/metabolismo
12.
Life Sci ; 344: 122556, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38471620

RESUMEN

Engineering a patient's own T cells to accurately identify and eliminate cancer cells has effectively cured individuals afflicted with previously incurable hematologic cancers. These findings have stimulated research into employing chimeric antigen receptor (CAR) T therapy across various areas within the field of oncology. However, evidence from both clinical and preclinical investigations emphasize the broader potential of CAR T therapy, extending beyond oncology to address autoimmune disorders, persistent infections, cardiac fibrosis, age-related ailments and other conditions. Concurrently, the advent of novel technologies and platforms presents additional avenues for utilizing CAR T therapy in non-cancerous contexts. This review provides an overview of the rationale behind CAR T therapy, delineates ongoing challenges in its application to cancer treatment, summarizes recent findings in non-cancerous diseases, and engages in discourse regarding emerging technologies that bear relevance. The review delves into prospective applications of this therapeutic approach across a diverse range of scenarios. Lastly, the review underscores concerns related to precision and safety, while also outlining the envisioned trajectory for extending CAR T therapy beyond cancer treatment.


Asunto(s)
Neoplasias Hematológicas , Neoplasias , Receptores Quiméricos de Antígenos , Humanos , Receptores Quiméricos de Antígenos/uso terapéutico , Neoplasias/terapia , Inmunoterapia Adoptiva , Linfocitos T , Neoplasias Hematológicas/terapia
13.
Phys Chem Chem Phys ; 26(14): 10494-10505, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38517057

RESUMEN

Hexagonal boron nitride possesses a unique layered structure, high specific surface area and similar electronic properties as graphene, which makes it not only a promising catalyst support, but also a highly effective metal-free catalyst in the booming field of green chemistry. Reactions involving small molecules (e.g., oxygen, low carbon alkanes, nitrogen and carbon dioxide) have always been a hot topic in catalytic research, especially associated with the adsorption and activation regime of different forms of small molecules on catalysts. In this review, we have investigated the adsorption of different small molecules and the relevant activation mechanisms of four typical chemical bonds (OO, C-H, NN, CO) on hexagonal boron nitride. Recent progress on approaches adopted to enhance the activation capacity such as doping, defect engineering and heterostructuring are summarized, highlighting the potential applications of nonmetallic hexagonal boron nitride catalysts in various reactions. This comprehensive investigation offers a reference point for the enhanced mechanistic understanding and future design of effective and sustainable catalytic systems based on boron nitride.

14.
ACS Nano ; 18(12): 9128-9136, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38492230

RESUMEN

The growth of all-inorganic perovskite single-crystal microstructures on substrates is a promising approach for constructing photonic and electronic microdevices. However, current preparation methods typically involve direct control of ions or atoms, which often depends on specific lattice-matched substrates for epitaxial growth and other stringent conditions that limit the mild preparation and flexibility of device integration. Herein, we present the on-substrate fabrication of CsPbBr3 single-crystal microstructures obtained via a nanoparticle self-assembly assisted low-temperature sintering (NSALS) method. Sintering guided by self-assembled atomically oriented superlattice embryos facilitated the formation of single-crystal microstructures under mild conditions without substrate dependence. The as-prepared on-substrate microstructures exhibited a consistent out-of-plane orientation with a carrier lifetime of up to 82.7 ns. Photodetectors fabricated by using these microstructures exhibited an excellent photoresponse of 9.15 A/W, and the dynamic optical response had a relative standard deviation as low as 0.1831%. The discrete photosensor microarray chip with 174000 pixels in a 100 mm2 area showed a response difference of less than 6%. This method of nanoscale particle-controlled single crystal growth on a substrate offers a perspective for mild-condition preparation and in situ repair of crystals of various types. This advancement can propel the flexible integration and widespread application of perovskite devices.

15.
Skin Res Technol ; 30(1): e13543, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38186063

RESUMEN

BACKGROUND: Rosacea, a common chronic inflammatory skin disease worldwide, is currently incurable with complex pathogenesis. Dendrobium polysaccharide (DOP) may exert therapeutic effects on rosacea via acting on the NF-κB-related inflammatory and oxidative processes. MATERIALS AND METHODS: In this study, an LL-37-induced rosacea-like mouse model was established. HE staining was used to assess the skin lesions, erythema severity scores, pathological symptoms, and inflammatory cell numbers of mice in each group. The inflammation level was quantitatively analyzed using enzyme-linked immunosorbent assay (ELISA) and reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR). The expression levels of TLR4 and p-NF-κB were finally detected. RESULTS: DOP improved skin pathological symptoms of rosacea mice. DOP also alleviated the inflammation of rosacea mice. Moreover, the TLR4/NF-κB pathway was observed to be inhibited in the skin of mice after DOP application. These findings evidenced the anti-inflammatory effects of DOP on the LL-37-induced rosacea mouse model. DOP could inhibit NF-κB activation, suppress neutrophil infiltration, and reduce pro-inflammatory cytokines production, which may be the reason for DOP protecting against rosacea. CONCLUSION: This study may propose an active candidate with great potential for rosacea drug development and lay a solid experimental foundation for promoting DOP application in rosacea therapy.


Asunto(s)
Dendrobium , Rosácea , Animales , Ratones , FN-kappa B , Receptor Toll-Like 4 , Rosácea/inducido químicamente , Rosácea/tratamiento farmacológico , Modelos Animales de Enfermedad , Inflamación , Polisacáridos/farmacología , Polisacáridos/uso terapéutico
16.
Int J Biol Macromol ; 259(Pt 1): 129103, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38181907

RESUMEN

Wearable electronic skin has gained increasing popularity due to its remarkable properties of high flexibility, sensitivity, and lightweight, making it an ideal choice for detecting human physiological activity. In this study, we successfully prepared e-skin using regenerated chitin (RCH) and sulfonated carbon nanotubes (SCNTs). The e-skin demonstrated brilliant mechanical and sensing properties, exhibiting a sensitivity of 1.75 kPa-1 within the 0-5 kPa range and a fast response-recovery time of <10 ms. Furthermore, it displayed an ultra-low detection limit of 1.39 Pa (5 mg), exceptional stability (up to 11,000 cycles), and a remarkable mechanical strength, reaching up to 50 MPa. Moreover, the e-skin was fabricated through a simple and economical approach. With the popularity of micro sensing devices, the e-skin holds tremendous potential for various applications, including wearable electronic devices, health and sports monitoring, artificial intelligence and other fields.


Asunto(s)
Nanotubos de Carbono , Dispositivos Electrónicos Vestibles , Humanos , Inteligencia Artificial , Quitina , Piel
17.
Biomed Chromatogr ; 38(3): e5795, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38071756

RESUMEN

Following the highly successful Chinese American Society for Mass Spectrometry (CASMS) conferences in the previous 2 years, the 3rd CASMS Conference was held virtually on August 28-31, 2023, using the Gather.Town platform to bring together scientists in the MS field. The conference offered a 4-day agenda with a scientific program consisting of two plenary lectures, and 14 parallel symposia in which a total of 70 speakers presented technological innovations and their applications in proteomics and biological MS and metabo-lipidomics and pharmaceutical MS. In addition, 16 invited speakers/panelists presented at two research-focused and three career development workshops. Moreover, 86 posters, 12 lightning talks, 3 sponsored workshops, and 11 exhibitions were presented, from which 9 poster awards and 2 lightning talk awards were selected. Furthermore, the conference featured four young investigator awardees to highlight early-career achievements in MS from our society. The conference provided a unique scientific platform for young scientists (i.e. graduate students, postdocs, and junior faculty/investigators) to present their research, meet with prominent scientists, learn about career development, and job opportunities (http://casms.org).


Asunto(s)
Espectrometría de Masas , Lipidómica , Preparaciones Farmacéuticas , Proteómica , Congresos como Asunto
18.
Anal Chem ; 95(51): 18871-18879, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-38092461

RESUMEN

Nitric oxide (NO) is a small molecule that plays important roles in biological systems and human diseases. The abundance of intracellular NO is tightly related to numerous biological processes. Due to cell heterogeneity, the intracellular NO amounts significantly vary from cell to cell, and therefore, any meaningful studies need to be conducted at the single-cell level. However, measuring NO in single cells is very challenging, primarily due to the extremely small size of single cells and reactive nature of NO. In the current studies, the quantitative reaction between NO and amlodipine, a compound containing the Hantzsch ester group, was performed in live cells. The product dehydro amlodipine was then detected by the Single-probe single-cell mass spectrometry technique to quantify NO in single cells. The experimental results indicated heterogeneous distributions of intracellular NO amounts in single cells with the existence of subpopulations.


Asunto(s)
Amlodipino , Óxido Nítrico , Humanos , Óxido Nítrico/análisis , Espectrometría de Masas/métodos
19.
J Med Virol ; 95(12): e29318, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38112106

RESUMEN

To examine the effectiveness of azvudine and nirmatrelvir-ritonavir in treating hospitalized patients with moderate-to-severe COVID-19. We emulated a target trial with a multicenter retrospective cohort of hospitalized adults with moderate-to-severe COVID-19 without contraindications for azvudine or nirmatrelvir-ritonavir between December 01, 2022 and January 19, 2023 (during the Omicron BA.5.2 variant wave). Exposures included treatment with azvudine or nirmatrelvir-ritonavir for 5 days versus no antiviral treatment during hospitalization. Primary composite outcome (all-cause death and initiation of invasive mechanical ventilation), and their separate events were evaluated. Of the 1154 patients, 27.2% were severe cases. In the intent-to-treat analyses, azvudine reduced all-cause death (Hazard ratio [HR]: 0.31; 95% CI: 0.12-0.78), and its composite with invasive mechanical ventilation (HR: 0.47; 95% CI: 0.24-0.92). Nirmatrelvir-ritonavir reduced invasive mechanical ventilation (HR: 0.42; 95% CI: 0.17-1.05), and its composite with all-cause death (HR: 0.38; 95% CI: 0.18-0.81). The study did not identify credible subgroup effects. The per-protocol analyses and all sensitivity analyses confirmed the robustness of the findings. Both azvudine and nirmatrelvir-ritonavir improved the prognosis of hospitalized adults with moderate-to-severe COVID-19.


Asunto(s)
Antivirales , Tratamiento Farmacológico de COVID-19 , COVID-19 , Ritonavir , Adulto , Humanos , Antivirales/uso terapéutico , Estudios Retrospectivos , Ritonavir/uso terapéutico
20.
Nat Commun ; 14(1): 6395, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37833262

RESUMEN

Artificial intelligence (AI) has been widely applied in drug discovery with a major task as molecular property prediction. Despite booming techniques in molecular representation learning, key elements underlying molecular property prediction remain largely unexplored, which impedes further advancements in this field. Herein, we conduct an extensive evaluation of representative models using various representations on the MoleculeNet datasets, a suite of opioids-related datasets and two additional activity datasets from the literature. To investigate the predictive power in low-data and high-data space, a series of descriptors datasets of varying sizes are also assembled to evaluate the models. In total, we have trained 62,820 models, including 50,220 models on fixed representations, 4200 models on SMILES sequences and 8400 models on molecular graphs. Based on extensive experimentation and rigorous comparison, we show that representation learning models exhibit limited performance in molecular property prediction in most datasets. Besides, multiple key elements underlying molecular property prediction can affect the evaluation results. Furthermore, we show that activity cliffs can significantly impact model prediction. Finally, we explore into potential causes why representation learning models can fail and show that dataset size is essential for representation learning models to excel.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...