Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Adv Sci (Weinh) ; : e2400253, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39119847

RESUMEN

High-frequency oscillatory activity in cognition-related neural circuits during wakefulness consistently induces the growth of dendritic spines and axonal terminals. Although these structural changes are essential for cognitive functions, it is hypothesized that if these newly expanded structures fail to establish functional connections, they may become superfluous. Sleep is believed to facilitate the reduction of such redundant structures to maintain neural homeostasis. However, the mechanisms underlying this pruning process during sleep remain poorly understood. In this study, that melatonin type 3 receptors (MT3Rs) are selectively expressed in the stellate neurons of the medial entorhinal cortex (MEC) is demonstrated, an area where high melatonin levels are detected during sleep. Activation of MT3Rs during sleep initiates the shrinkage of dendritic spines in stellate neurons by downregulating neural network activity and dephosphorylating synaptic proteins in the MEC. This process is disrupted when MT3R expression is knocked down or when MT3Rs are blocked during sleep. Notably, interference with MT3Rs in the MEC during sleep impairs the acquisition of spatial memory but does not affect object memory acquisition following sleep. These findings reveal novel molecular mechanisms involving melatonin and MT3Rs in the regulation of dendritic spine shrinkage during sleep, which is crucial for the acquisition and consolidation of spatial memory.

2.
Foods ; 13(11)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38890932

RESUMEN

To thoroughly understand the profile of phenolic phytochemicals in kidney bean seeds cultivated in a cold region, the extractions, contents, antioxidant activities, compositions of free and bound phenols in the seed coat and cotyledon, and also relevant color attributes, were investigated. The results indicated that ultrasound-assisted extraction was an efficient method for free phenols. The bound phenols in seed coat and cotyledon were released more efficiently by alkali-acid and acid-alkali sequential hydrolysis, respectively. Under the optimized extractions, total phenols (TPC), flavonoids (TFC), and anthocyanins (TAC) ranged in 7.81-32.89 mg GAE/g dw, 3.23-15.65 mg RE/g dw, and 0-0.21 mg CE/g dw in the whole seeds of the five common kidney beans. There was a big difference in phenolic distribution between red and white seeds. From whole seed, the phenols in the four red cultivars mainly existed in free state (78.84%) and seed coat (71.56%), while the phenols in the white 'Sark' divided equally between free (51.18%) and bound (48.82%) states and consisted chiefly in cotyledon (81.58%). The correlation analyses showed that the antioxidant activities were significantly and positively correlated with TPC and TFC. The phenolic attributes were closely associated with the color of the seed coat. Red seeds had higher total contents of phenols than white seeds. TAC had a positively significant correlation with redness. Brightness and yellowness showed a negatively significant correlation with TPC, TFC, and antioxidant capacities, which were necessarily linked with redness degree and spot in red seeds. The spotted red 'Yikeshu' with the most outstanding performance on phenolic attributes was selected to analyze phenolic compounds with UHPLC-QE-MS. Among the 85 identified phenolics, 2 phenolic acids and 10 flavonoids were dominant. The characteristic phenolics in free and bound states were screened in both seed coat and cotyledon, respectively. The available information on the phenolic profile may expand the utilization of kidney beans as a nutritional ingredient in the food industry.

3.
Stress Biol ; 4(1): 29, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38861095

RESUMEN

In eukaryotes, the nuclear membrane that encapsulates genomic DNA is composed of an inner nuclear membrane (INM), an outer nuclear membrane (ONM), and a perinuclear space. SUN proteins located in the INM and KASH proteins in the ONM form the SUN-KASH NM-bridge, which functions as the junction of the nucleocytoplasmic complex junction. Proteins containing the SUN domain showed the highest correlation with differentially accumulated proteins (DAPs) in the wheat response to fungal stress. To understand the characteristics of SUN and its associated proteins in wheat responding to pathogen stress, here we investigated and comprehensive analyzed SUN- and KASH-related proteins among the DAPs under fungi infection based on their conserved motifs. In total, four SUN proteins, one WPP domain-interacting protein (WIP), four WPP domain-interacting tail-anchored proteins (WIT), two WPP proteins and one Ran GTPase activating protein (RanGAP) were identified. Following transient expression of Nicotiana benthamiana, TaSUN2, TaRanGAP2, TaWIT1 and TaWIP1 were identified as nuclear membrane proteins, while TaWPP1 and TaWPP2 were expressed in both the nucleus and cell membrane. RT-qPCR analysis demonstrated that the transcription of TaSUN2, TaRanGAP2 and TaWPP1 were strongly upregulated in response to fungal infection. Furthermore, using the bimolecular fluorescence complementation, the luciferase complementation and a nuclear and split-ubiquitin-based membrane yeast two-hybrid systems, we substantiated the interaction between TaSUN2 and TaWIP1, as well as TaWIP1/WIT1 and TaWPP1/WPP2. Silencing of TaSUN2, TaRanGAP2 and TaWPP1 in wheat leaves promoted powdery mildew infection and hyphal growth, and reduced the expression of TaBRI1, TaBAK1 and Ta14-3-3, indicating that these NM proteins play a positive role in resistance to fungal stress. Our study reveals the characteristics of NM proteins and propose the preliminary construction of SUN-WIP-WPP-RanGAP complex in wheat, which represents a foundation for detail elucidating their functions in wheat in future.

4.
Heliyon ; 10(9): e30137, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38720743

RESUMEN

Under the dual-carbon goals, enhancing the green development level of logistics industry and realizing its low-carbon transformation are important issues that need to be solved urgently. Amidst the continuous escalation in the total energy consumption of the national logistics industry, the Beijing-Tianjin-Hebei (BTH) region has exhibited a favorable descending trajectory in this respect. It is necessary to investigate the underlying reasons. Based on the panel data from 2012 to 2021, the DEA and Malmquist index are employed to analyze the low-carbon logistics efficiency of the BTH region from both static and dynamic perspectives. Furthermore, the inefficiency analysis is conducted to identify the deficiencies of low-carbon logistics industry in this region. Results show that (1) from the static perspective, the development of low-carbon logistics industry in the BTH region is relatively unbalanced. Compared to Tianjin and Hebei, Beijing's low-carbon logistics efficiency is significantly lower, becoming the focal area for attention; (2) from the dynamic perspective, technological progress is the main reason for the fluctuation of total factor productivity in the BTH region and a constraining factor for further improvements; (3) from the results of inefficiency analysis, the forthcoming emphasis on low-carbon logistics in Beijing should be on optimizing the number of logistics practitioners, transportation efficiency, and energy efficiency. Economic output and energy efficiency are relatively vulnerable aspects in Tianjin and Hebei, respectively, warranting due consideration. The research results of this paper have important practical implications for better developing low-carbon logistics in the BTH region and leveraging its leading role nationwide.

5.
J Cell Mol Med ; 28(9): e18369, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38712978

RESUMEN

Acute myeloid leukaemia (AML) is a fatal and refractory haematologic cancer that primarily affects adults. It interferes with bone marrow cell proliferation. Patients have a 5 years survival rate of less than 30% despite the availability of several treatments, including chemotherapy, allogeneic haematopoietic stem cell transplantation (Allo-HSCT), and receptor antagonist drugs. Allo-HSCT is the mainstay of acute myeloid leukaemia treatment. Although it does work, there are severe side effects, such as graft-versus-host disease (GVHD). In recent years, chimeric antigen receptor (CAR)-T cell therapies have made significant progress in the treatment of cancer. These engineered T cells can locate and recognize tumour cells in vivo and release a large number of effectors through immune action to effectively kill tumour cells. CAR-T cells are among the most effective cancer treatments because of this property. CAR-T cells have demonstrated positive therapeutic results in the treatment of acute myeloid leukaemia, according to numerous clinical investigations. This review highlights recent progress in new targets for AML immunotherapy, and the limitations, and difficulties of CAR-T therapy for AML.


Asunto(s)
Inmunoterapia Adoptiva , Leucemia Mieloide Aguda , Receptores Quiméricos de Antígenos , Humanos , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/inmunología , Inmunoterapia Adoptiva/métodos , Receptores Quiméricos de Antígenos/inmunología , Linfocitos T/inmunología , Animales
6.
Oncol Lett ; 27(6): 277, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38699660

RESUMEN

Breast cancer (BRCA) is a leading cause of death in women worldwide, accounting for 31% of female cancer. Autophagy plays a crucial role in cancer progression, however, the function of autophagy-related gene neuroregulatory protein 2 (NRG2) in BRCA and its underlying molecular mechanisms remain unclear. In the present study, the expression of the NRG2 gene in BRCA was significantly down-regulated compared with the normal controls. The low expression level of NRG2 was related to poor survival rate of BRCA. The receiver operating characteristic curve of NRG2 showed a good diagnostic value for distinguishing BRCA from normal tissues (AUC=0.932). GO-KEGG analysis and GSEA enrichment analysis showed that NRG2 and its regulated genes were enriched in autophagy-related and immune-related pathways, and NRG2 was positively correlated with a number of immune cells and immune checkpoint genes. In addition, knockdown of NRG2 significantly promoted the proliferation, invasion and migration of BRCA cells. The autophagy marker, LC3-II and epithelial-mesenchymal transition (EMT) marker, vimentin were increased, while P62 and E-cadherin were decreased in response to NRG2 depletion. The findings of the present study demonstrated that NRG2 acts as a tumor suppressor factor that contributes to the immune escape and anti-tumor immunity inhibition by regulating the pathological process of autophagy and EMT, suggesting that NRG2 could be used as a prognostic biomarker and clinical target for BRCA therapy.

7.
J Cereb Blood Flow Metab ; : 271678X241230188, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38639025

RESUMEN

Accumulating evidence shows that most chronic neurological diseases have a link with sleep disturbances, and that patients with chronically poor sleep undergo an accelerated cognitive decline. Indeed, a single-night of sleep deprivation may increase metabolic waste levels in cerebrospinal fluid. However, it remains unknown how chronic sleep disturbances in isolation from an underlying neurological disease may affect the glymphatic system. Clearance of brain interstitial waste by the glymphatic system occurs primarily during sleep, driven by multiple oscillators including arterial pulsatility, and vasomotion. Herein, we induced sleep fragmentation in young wildtype mice and assessed the effects on glymphatic activity and cognitive functions. Chronic sleep fragmentation reduced glymphatic function and impaired cognitive functions in healthy mice. A mechanistic analysis showed that the chronic sleep fragmentation suppressed slow vasomotion, without altering cardiac-driven pulsations. Taken together, results of this study document that chronic sleep fragmentation suppresses brain metabolite clearance and impairs cognition, even in the absence of disease.

8.
Mikrochim Acta ; 191(5): 244, 2024 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-38578321

RESUMEN

The sensing sensitivity was improved for silver nanoparticles (AgNPs)-based colorimetric biosensors by using the most suitable salt to induce AgNPs aggregation. As for the salt composed of low-affinity anion and monovalent cation, the cation-dependent charge screening effect was the driving force for AgNPs aggregation. Apart from the charge screening effect, both the bridging of multivalent cation to the surface ligand of AgNP and the interaction between anion and Ag contributed to inducing AgNPs aggregation. Considering the higher aggregation efficiency of AgNPs resulted in a narrower sensing range, salt composed of low-affinity anion and monovalent cation was recommended for AgNPs-based colorimetric analysis, which was confirmed by fourfold higher sensitivity of DNA-21 detection using NaF than NaCl. This work inspires further thinking on improving the sensing performance of metal nanomaterials-based sensors from the point of colloidal surface science.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Cloruro de Sodio , Plata , Colorimetría/métodos , Aniones , Cationes Monovalentes
9.
Mater Horiz ; 11(12): 2886-2897, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38563639

RESUMEN

Neuromorphic computing, which mimics biological neural networks, is widely regarded as the optimal solution for addressing the limitations of traditional von Neumann computing architecture. In this work, an adjustable multistage resistance switching ferroelectric Bi2FeCrO6 diode artificial synaptic device was fabricated using a sol-gel method with a simple process. The device exhibits nonlinearity in its electrical characteristics, demonstrating tunable multistage resistance switching behavior and a strong ferroelectric diode effect through the manipulation of ferroelectric polarization. One of its salient advantages resides in its capacity to dynamically regulate its polarization state in response to an external electric field, thereby facilitating the fine-tuning of synaptic connection strength while maintaining synaptic stability. The device is capable of accurately simulating the fundamental properties of biological synapses, including long/short-term plasticity, paired-pulse facilitation, and spike-timing-dependent plasticity. Additionally, the device exhibits a distinctive photoelectric response and is capable of inducing synaptic plasticity by light signal activation. The utilization of a femtosecond laser for the scrutiny of carrier transport mechanisms imparts profound insights into the intricate dynamics governing the optical memory effect. Furthermore, utilizing a convolutional neural network (CNN) architecture, the recognition accuracy of the MNIST and fashion MNIST datasets was improved to 95.6% and 78%, respectively, through the implementation of improved random adaptive algorithms. These findings present a new opportunity for utilizing Bi2FeCrO6 materials in the development of artificial synapses for neuromorphic computation.

10.
Front Genet ; 15: 1293824, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38572416

RESUMEN

Both overall survival (OS) and disease-specific survival (DSS) are significant when determining a patient's prognosis for breast cancer (BC). The effect of DSS-related microRNAs on BC susrvival, however, is not well understood. Here, we spotted differentially expressed miRNAs (DEMs) in the TCGA database of BC DSS, identified eight DSS-related miRNAs, and constructed a risk model. AUC values at 1, 3, and 5 years were 0.852, 0.861, and 0.868, respectively, indicating a risk model's excellent prognostic prediction ability. Then, we validated miRNA roles in BC OS and finally defined miR-551b as an independently prognostic miRNA in BC. According to function analysis, miR-551b is strongly linked with the emergence and spread of cancer, including protein ubiquitination, intracellular protein transport, metabolic pathways, and cancer pathways. Moreover, we confirmed the low expression of miR-551b in BC tissue and cells. After miR-551b inhibition or overexpression, cell function was either dramatically increased or diminished, respectively, indicating that miR-551b could regulate BC proliferation, invasion, and migration. In conclusion, we thoroughly clarified BC-related miRNAs on DSS and OS and verified miR-551b as a crucial regulator in the development and prognosis of cancer. These results can offer fresh ideas for BC therapy.

11.
J Colloid Interface Sci ; 660: 989-996, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38290325

RESUMEN

The pursuit of efficient and economically viable catalysts for liquid/solid-state zinc-air batteries (ZABs) is of paramount importance yet presents formidable challenge. Herein, we synthesized a vacancy-rich cobalt/manganese oxide catalyst (Co/MnO@NC) stabilized on a nitrogen-doped mesoporous carbon (NC) nanosphere matrix by leveraging hydrothermal and high-temperature pyrolysis strategy. The optimized Co/MnO@NC demonstrates fast reaction kinetics and large limiting current densities comparable to commercial Pt/C in alkaline electrolyte for oxygen reduction reaction (ORR). Moreover, the Co/MnO@NC serves as an incredible cathode material for both liquid and flexible solid-state ZABs, delivering impressive peak power densities of 217.7 and 63.3 mW cm-2 and robust long-term stability (459 h), outperforming the state-of-the-art Pt/C and majority of the currently reported catalysts. Research indicates that the superior performance of the Co/MnO@NC catalyst primarily stems from the synergy between the heightened electrical conductivity of metallic Co and the regulatory capacity of MnO on adsorbed oxygen intermediates. In addition, the abundance of vacancies regulates the electronic configuration, and superhydrophilicity facilitates efficient electrolyte diffusion, thereby effectively ensuring optimal contact between the active site and reactants. Besides, the coexisting NC layer avoids the shedding of active sites, resulting in high stability. This work provides a viable approach for designing and advancing high-performance liquid/solid-state ZABs, highlighting the great potential of energy storage technology.

12.
PLoS One ; 18(12): e0289966, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38100461

RESUMEN

Abdominal aortic aneurysm (AAA), an extremely dangerous vascular disease with high mortality, causes massive internal bleeding due to aneurysm rupture. To boost the research on AAA, efforts should be taken to organize and link the information about AAA-related genes and their functions. Currently, most researchers screen through genetic databases manually, which is cumbersome and time-consuming. Here, we developed "AAAKB" a manually curated knowledgebase containing genes, SNPs and pathways associated with AAA. In order to facilitate researchers to further explore the mechanism network of AAA, AAAKB provides predicted genes that are potentially associated with AAA. The prediction is based on the protein interaction information of genes collected in the database, and the random forest algorithm (RF) is used to build the prediction model. Some of these predicted genes are differentially expressed in patients with AAA, and some have been reported to play a role in other cardiovascular diseases, illustrating the utility of the knowledgebase in predicting novel genes. Also, AAAKB integrates a protein interaction visualization tool to quickly determine the shortest paths between target proteins. As the first knowledgebase to provide a comprehensive catalog of AAA-related genes, AAAKB will be an ideal research platform for AAA. Database URL: http://www.lqlgroup.cn:3838/AAAKB/.


Asunto(s)
Aneurisma de la Aorta Abdominal , Bases de Datos Genéticas , Humanos , Aneurisma de la Aorta Abdominal/genética
13.
Risk Manag Healthc Policy ; 16: 2531-2541, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38024501

RESUMEN

Background: Infusion rate is one of the essential elements that should be included in all intravenous orders. Patients may experience adverse consequences or risks associated with inappropriate infusion. Meanwhile, there is growing pressure on the chemotherapy unit to deliver treatment quickly, efficiently, and safely, and thus it is very necessary to improve the chemotherapy process and service to cancer patients. Clinicians should consider how to further standardize infusion therapy, and innovate new infusion strategies to increase efficacy, reduce toxicity, improve patient satisfaction and save health resource costs. Sporadic studies have evaluated the effects of infusion rates of anticancer agents on clinical outcomes, economic benefits, and administration efficiency. However, an update review has not been available. Methods: Relevant literature was identified by search of PubMed until September 2023. Results: Infusion rates may have significant effect on the efficacy of anticancer agents (e.g., methotrexate, fluorouracil, and arsenic trioxide). Slow infusion is safer for platinum compounds, doxorubicin and carmustine, whereas fast infusion is safer than slow infusion of gemcitabine. Optimal flow rates of paclitaxel and fluorouracil are based on the balance between multiple risks of toxicity. Optimal infusion rate may bring economic benefits. If efficacy and safety are not compromised, shortened infusion may result in higher patient satisfaction, improved institutional efficiency and more nursing time available for other activities (e.g., biosimilar products, endostar). Other concerns about infusion rate include clinical indications (eg, paclitaxel and rituximab, methotrexate), severity and type of hypersensitivity reactions (e.g., platinum compounds), formulation features (e.g., paclitaxel, doxorubicin), and genetic polymorphism (e.g., gemcitabine, methotrexate). Conclusion: The latest knowledge of infusion rate concerns will enhance the appropriateness and accuracy in intravenous administration. Interdisciplinary teams should collaborate and implement relevant risk management and healthcare policy. It is worthwhile to conduct comparative studies of intravenous therapy with different infusion speeds.

14.
Int J Biol Macromol ; 253(Pt 7): 127443, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37844812

RESUMEN

A capsular polysaccharide, namely CPS-2, was isolated from Lactobacillus fermentum GBJ, purified using DEAE-52 anion exchange chromatography, and structurally characterized. We found that CPS-2 is homogenous, has an average molecular weight of 377 KDa, and is mainly composed of galactose and glucose at a molar ratio of 1.54:1.00. Its backbone comprises α-D-Galp-(1 â†’ 3), α-D-Galp-(1 â†’ 3,6), ß-D-Glcp-(1 â†’ 2), ß-D-Galp-(1 â†’ 6), and α-D-Galp-(1 â†’ 4) residues with a side chain of ß-D-Glcp-(1→). CPS-2 exerts an immunomodulatory effect by improving the proliferation and phagocytosis of macrophage RAW264.7 and promoting the secretion of NO and cytokines. The maximum secretion levels of IL-1ß, IL-6, IL-10, and TNF-α were 1.96-, 0.11-, 0.22-, and 0.46-fold higher than those of the control, respectively. Furthermore, CPS-2 could significantly enhance the antioxidant system, extend lifespan, and improve stress tolerance of Caenorhabditis elegans at both exposure doses of 31.25 and 62.5 µg/mL. The average lifespan of nematodes reached a maximum in the 62.5 µg/mL-treated group after 10.39 days, 6.56 h, and 23.56 h in normal, oxidative stress, and heat shock environment, with extension percentages of 16.61 %, 43.23 %, and 15.77 %, respectively; therefore, CPS-2 displays an anti-aging effect. The significant bioactivity of CPS-2 promotes its application as a promising immunomodulatory and anti-aging ingredient in the food or pharmaceutical field.


Asunto(s)
Caenorhabditis elegans , Limosilactobacillus fermentum , Animales , Polisacáridos/química , Citocinas , Macrófagos
15.
Transl Psychiatry ; 13(1): 310, 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37802998

RESUMEN

Depression is a common chronic psychiatric illness, which is resistant to medical treatments. While melatonin may alleviate certain depression symptoms, evidence for its efficacy against core symptoms is lacking. Here, we tested a mechanism whereby melatonin rescues the behavioral outcomes of the chronic unpredictable mild stress (CUMS) mouse model of depression. CUMS mice showed depressive behaviors to tail suspension, open field behavior, and sucrose preference test, and cognitive dysfunction in the Morris water maze. Impairments in these measures were relieved by melatonin treatment. Moreover, CUMS mice had impaired glymphatic function across the sleep-wake cycle due to the astrocytic loss and disturbance of circadian regulation of the polarized expression of aquaporin-4 (AQP4) water channels in perivascular astrocytes. EEG results in CUMS mice showed a reduced total sleep time and non-rapid eye movement (NREM) sleep, due to sleep fragmentation in the light phase. CUMS mice lost the normal rhythmic expressions of circadian proteins Per2, Cry2, Bmal1, Clock, and Per1. However, the melatonin treatment restored glymphatic system function and the polarization of AQP4, while improving sleep structure, and rectifying the abnormal expression of Per2, Bmal1, Clock, and Per1 in CUMS mice. Interestingly, Per2 expression correlated negatively with the polarization of AQP4. Further studies demonstrated that Per2 directed the location of AQP4 expression via interactions with the α-dystrobrevin (Dtna) subunit of AQP4 in primary cultured astrocytes. In conclusion, we report a new mechanism whereby melatonin improves depression outcomes by regulating the expression of the circadian protein Per2, maintaining the circadian rhythm of astrocytic AQP4 polarization, and restoring glymphatic function.


Asunto(s)
Disfunción Cognitiva , Melatonina , Ratones , Animales , Melatonina/farmacología , Melatonina/uso terapéutico , Depresión/tratamiento farmacológico , Factores de Transcripción ARNTL , Ritmo Circadiano/fisiología
16.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(4): 1184-1191, 2023 Aug.
Artículo en Chino | MEDLINE | ID: mdl-37551496

RESUMEN

OBJECTIVE: To investigate the correlation between plasmacytoid dendritic cell (pDC) dose in grafts and the occurrence of cytomegalovirus (CMV) infection after allogeneic hematopoietic stem cell transplantation (allo-HSCT). METHODS: The clinical data of 80 children who received allo-HSCT in Children's Hospital of Soochow University from August 20, 2020 to June 11, 2021 were retrospectively analyzed. Proportions of DC subsets and T-cell subsets in grafts were detected by flow cytometry in order to calculate infused cell dose of each cell. Weekly monitoring of CMV-DNA copies in peripheral blood for each child were performed after transplantation. The last follow-up date was December 31, 2021. RESULTS: All the children gained hematopoietic reconstitution. CMV infection was observed in 51 children (63.8%±5.4%) within the first 100 days after transplantation, including 2 cases developing CMV disease. Univariate analysis indicated that infused doses of DC and pDC were significantly associated with CMV infection within 100 days after allo-HSCT (P <0.05). Multivariate analysis indicated that a high dose infusion of pDC was an independent protective factor for CMV infection within 100 days after allo-HSCT (P <0.05). By the end of follow-up, 7 children died of transplantation-related complications, including 2 deaths from CMV disease, 2 deaths from extensive chronic graft-versus-host disease, and 3 deaths from capillary leak syndrome. The overall survival rate was 91.2%. CONCLUSION: The pDC in grafts may be associated with early infection of CMV after allo-HSCT, while a high infused pDC dose may serve as a protective factor for CMV infection after transplantation.


Asunto(s)
Infecciones por Citomegalovirus , Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Niño , Humanos , Estudios Retrospectivos , Enfermedad Injerto contra Huésped/complicaciones , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Células Dendríticas
17.
Food Res Int ; 170: 112949, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37316043

RESUMEN

In vitro simulated digestion and fecal fermentation were performed to investigate the influence of mixed grains on gut microbes. In addition, the key metabolic pathways and enzymes associated with short-chain fatty acids (SCFAs) were explored. The mixed grains exhibited an observable regulatory effect on the composition and metabolism of intestinal microorganisms, especially in probiotics, such as Bifidobacterium spp., Lactobacillus spp., and Faecalibacterium spp. WR (wheat + rye), WB (wheat + highland barley) and WO (wheat + oats) tended to generate lactate and acetate, which are related to Sutterella, Staphylococcus, etc. WQ (wheat + quinoa) induced high propionate and butyrate accumulation by consuming lactate and acetate, mainly through Roseburia inulinivorans, Coprococcus catus and Anaerostipes sp., etc. Moreover, bacteria enriched in different mixed grain groups regulated the expression of pivotal enzymes in metabolic pathways and then affected the generation of SCFAs. These results provide new knowledge on the characteristics of intestinal microbial metabolism in different mixed grain substrates.


Asunto(s)
Ácidos Grasos Volátiles , Propionatos , Fermentación , Butiratos , Lactatos , Triticum , Grano Comestible
18.
Front Aging Neurosci ; 15: 1142055, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37032820

RESUMEN

Introduction: Alzheimer's disease (AD) is a progressive neurodegenerative disease that results in cognitive impairment and is often accompanied by anxiety. In this study, we investigated whether the activation of VTAVgat neurons could reduce anxiety in APP/PS1 mice. We hypothesized that acute social defeat stress (SDS) would lead to anxiety in APP/PS1 mice, and that the activation of VTAVgat neurons would alleviate this anxiety. Methods: We exposed APP/PS1 mice to acute SDS and assessed anxiety using the open field test and elevated plus-arm test. Activated VTAVgat neurons was tested by cfos staining. Sleep quality was detected using electroencephalogram after SDS or non-SDS procedure. Sleep duration, sleep latency, and non-rapid eye movement (NREM) percentage were analyzed. VTAVgat neurons were chemogenetically activated by deschloroclozapine. Results: Our results showed that acute SDS led to anxiety in APP/PS1 mice, as evidenced by increased anxiety-related behaviors in the open field and elevated plus-arm tests. Activation of VTAVgat neurons by SDS led to an increase in sleep duration, primarily due to a decrease in sleep latency and an increase in NREMs. However, the quality of sleep was poor. Chemogenetical activation of VTAVgat neurons improved sleep quality and relieved SDS-induced anxiety. Furthermore, the anxiety state correlated negatively with sleep duration and NREM percentage and correlated positively with theta power density in APP/PS1 mice. Discussion: Our study provides evidence that the activation of VTAVgat neurons alleviates SDS-induced anxiety in APP/PS1 mice, suggesting that poor sleep quality may exacerbate anxiety in AD. These findings may have important implications for the treatment of anxiety in AD, as targeting VTAVgat neurons could be a potential therapeutic approach.

20.
Front Pharmacol ; 14: 1137151, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36909172

RESUMEN

Poly (ADP-ribose) polymerase 1 (PARP1) is a key DNA damage sensor that is recruited to damaged sites after DNA strand breaks to initiate DNA repair. This is achieved by catalyzing attachment of ADP-ribose moieties, which are donated from NAD+, on the amino acid residues of itself or other acceptor proteins. PARP inhibitors (PARPi) that inhibit PARP catalytic activity and induce PARP trapping are commonly used for treating BRCA1/2-deficient breast and ovarian cancers through synergistic lethality. Unfortunately, resistance to PARPi frequently occurs. In this review, we present the novel substrates and regulators of the PARP1-catalyzed poly (ADP-ribosyl)ation (PARylatison) that have been identified in the last 3 years. The overall aim is the presentation of protein interactions of potential therapeutic intervention for overcoming the resistance to PARPi.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...