Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
J Dairy Sci ; 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39369895

RESUMEN

Cow milk protein allergy (CMPA) is a significant health concern characterized by adverse immune reactions to cow milk proteins. Biomarkers for the accurate diagnosis and prognosis of CMPA are lacking. This study analyzed the clinical features of CMPA, and 16S RNA sequencing was used to investigate potential biomarkers through fecal microbiota profiling. Children with CMPA exhibit a range of clinical symptoms, including gastrointestinal (83% of patients), skin (53% of patients), and respiratory manifestations (26% of patients), highlighting the complexity of this condition. Laboratory analysis revealed significant differences in red cell distribution width (RDW) and inflammatory markers between the CMPA and control groups, suggesting immune activation and inflammatory responses in CMPA. Microbial diversity analysis revealed higher specific diversity indices in the CMPA group compared with those in control group, with significant differences at the genus and species levels. Bacteroides were more abundant in the CMPA group, whereas Bifidobacterium, Ruminococcus, Faecalibacterium, and Parabacteroides were less abundant. The control group exhibited a balanced microbial profile, with a predominant presence of Bifidobacterium bifidum and Akkermansia muciniphila. The significant abundance of Bifidobacterium in the control group (23.19% vs 9.89% in CMPA) was associated with improved growth metrics such as height and weight, suggesting its potential as a probiotic to prevent CMPA and enhance gut health. Correlation analysis linked specific microbial taxa such as Coprococcus and Bifidobacterium to clinical parameters such as family allergy history, weight and height, providing insights into CMPA pathogenesis. Significant differences in bacterial abundance suggested diagnostic potential, with a panel of 6 bacteria achieving high predictive accuracy (area under curve (AUC) = 0.8708). This study emphasizes the complex relationship between the gut microbiota and CMPA, offering valuable insights into disease mechanisms and diagnostic strategies.

2.
Small ; : e2406465, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39225379

RESUMEN

Oxygen evolution reaction (OER) electrocatalysts generally experience structural and electronic modifications during electrocatalysis. This phenomenon, referred to as surface reconstruction, results in the formation of catalytically active species that act as real OER sites. Controlling surface reconstruction therefore is vital for enhancing the OER performance of electrocatalysts. In this study, a new approach is introduced of heterostructure engineering to facilitate the surface reconstruction of target catalysts. Using MnCo carbonate hydroxide (MnCo─CH)@Co3N as a demonstration, it is discovered that the surface reconstruction occurs more readily and rapidly on MnCo─CH@Co3N than on Co3N. More interestingly, during the reconstruction process, Mn species migrate to the surface, enabling the in situ formation of highly active Mn-doped CoOOH. Consequently, the MnCo─CH@Co3N catalyst after reconstruction exhibits a low overpotential of 257 mV at 10 mA cm-2, compared to 379 mV of individual Co3N. This work offers fresh perspectives on understanding the enhanced OER performance of heterostructure electrocatalysts and the role of heterostructure in promoting surface reconstruction.

3.
J Radiat Res ; 65(4): 474-481, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38950346

RESUMEN

Laryngeal squamous cell carcinoma (LSCC) is one of the most aggressive cancers that affect the head and neck region. Recent researches have confirmed that long non-coding RNAs (lncRNAs) present an emerging role in diversiform diseases including cancers. Prostate cancer-associated ncRNA transcript 6 (PCAT6) is an oncogene in lung cancer, cervical cancer, colon cancer and gastric cancer, but its role in LSCC is still unknown. In the current study, we attempted to figure out the role of PCAT6 in LSCC. RT-qPCR was to analyze PCAT6 expression in LSCC cells. Functional assays were to uncover the role of PCAT6 in LSCC. Mechanism assays were to explore the regulatory mechanism behind PCAT6 in LSCC. PCAT6 exhibited higher expression in LSCC cells and PCAT6 strengthened cell proliferation and inhibited cell apoptosis. Furthermore, lncRNA PCAT6 modulated notch receptor 3 expression and activated NOTCH signaling pathway via serving as a sponge for miR-4731-5p. Taken together, lncRNA PCAT6 was identified as an oncogene in LSCC, which revealed that PCAT6 might be used as potential therapeutic target for LSCC.


Asunto(s)
Apoptosis , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Neoplasias Laríngeas , MicroARNs , ARN Largo no Codificante , Receptor Notch3 , Transducción de Señal , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Neoplasias Laríngeas/genética , Neoplasias Laríngeas/patología , Neoplasias Laríngeas/metabolismo , MicroARNs/metabolismo , MicroARNs/genética , Línea Celular Tumoral , Receptor Notch3/metabolismo , Receptor Notch3/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Secuencia de Bases
4.
Sci Total Environ ; 949: 174930, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39067608

RESUMEN

Hospital wastewater is a critical source of antimicrobial resistance (AMR), which facilitates the proliferation and spread of clinically significant antimicrobial resistance genes (ARGs) and pathogenic bacteria. This study utilized metagenomic approaches, including advanced binning techniques, such as MetaBAT2, MaxBin2, and CONCOCT, which offer significant improvements in accuracy and completeness over traditional binning methods. These methods were used to comprehensively assess the dynamics and composition of resistomes and mobilomes in untreated wastewater samples taken from two general hospitals and one cancer hospital. This study revealed a diverse bacterial landscape, largely consisting of Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria, with notable variations in microbial composition among hospitals. Analysis of the top 15 genera showed unique microbial pattern distribution in each hospital: Aeromonas was predominant in 1stHWTS (49.39 %), Acidovorax in the CAHWTS at 16.85 %, and Escherichia and Bacteroides in the 2ndHWTS at 11.44 % and 11.33 %, respectively. A total of 114 pathogenic bacteria were identified, with drug-resistant Aeromonas caviae and Escherichia coli being the most prevalent. The study identified 34 types and 1660 subtypes of ARGs, including important last-resort antibiotic resistance genes (LARGs), such as blaNDM, mcr, and tet(X). Using metagenomic binning, this study uncovered distinct patterns of host-resistance associations, particularly with Proteobacteria and Firmicutes. Network analysis highlighted the complex interactions among ARGs, mobile genetic elements (MGEs), and bacterial species, all contributing to the dissemination of AMR. These findings emphasize the intricate nature of AMR in hospital wastewater and the influence of hospital-specific factors on microbial resistance patterns. This study provides support for implementing integrated management strategies, including robust surveillance, advanced wastewater treatment, and strict antibiotic stewardship, to control the dissemination of AMR. Understanding the interplay among bacterial communities, ARGs, and MGEs is important for developing effective public health measures against AMR.


Asunto(s)
Hospitales , Metagenómica , Aguas Residuales , Aguas Residuales/microbiología , Farmacorresistencia Microbiana/genética , Genes Bacterianos , Farmacorresistencia Bacteriana/genética , Antibacterianos/farmacología , Bacterias/genética , Bacterias/efectos de los fármacos , Secuencias Repetitivas Esparcidas , Metagenoma
5.
Front Immunol ; 15: 1372693, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38605952

RESUMEN

Interleukins (ILs) are vital in regulating the immune system, enabling to combat fungal diseases like candidiasis effectively. Their inhibition may cause enhanced susceptibility to infection. IL inhibitors have been employed to control autoimmune diseases and inhibitors of IL-17 and IL-23, for example, have been associated with an elevated risk of Candida infection. Thus, applying IL inhibitors might impact an individual's susceptibility to Candida infections. Variations in the severity of Candida infections have been observed between individuals with different IL inhibitors, necessitating careful consideration of their specific risk profiles. IL-1 inhibitors (anakinra, canakinumab, and rilonacept), IL-2 inhibitors (daclizumab, and basiliximab), and IL-4 inhibitors (dupilumab) have rarely been associated with Candida infection. In contrast, tocilizumab, an inhibitor of IL-6, has demonstrated an elevated risk in the context of coronavirus disease 2019 (COVID-19) treatment, as evidenced by a 6.9% prevalence of candidemia among patients using the drug. Furthermore, the incidence of Candida infections appeared to be higher in patients exposed to IL-17 inhibitors than in those exposed to IL-23 inhibitors. Therefore, healthcare practitioners must maintain awareness of the risk of candidiasis associated with using of IL inhibitors before prescribing them. Future prospective studies need to exhaustively investigate candidiasis and its associated risk factors in patients receiving IL inhibitors. Implementing enduring surveillance methods is crucial to ensure IL inhibitors safe and efficient utilization of in clinical settings.


Asunto(s)
Candidiasis , Interleucina-17 , Humanos , Inhibidores de Interleucina , Estudios Prospectivos , Candidiasis/tratamiento farmacológico , Candidiasis/epidemiología , Interleucina-23
6.
Mycology ; 15(1): 30-44, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38558839

RESUMEN

The application of interleukin-17 (IL-17) inhibitors, including secukinumab, ixekizumab, brodalumab, and bimekizumab, are associated with elevated risk of candidiasis. These medications interfere with the IL-17 pathway, which is essential for maintaining mucosal barriers and coordinating the immune response against Candida species. The observational data and clinical trials demonstrate the increased incidence of candidiasis in individuals treated with IL-17 inhibitors. Brodalumab and bimekizumab pose a greater risk than secukinumab in eliciting candidiasis, whereas the data regarding ixekizumab are equivocal. Higher doses and prolonged treatment duration of IL-17 inhibitors increase the risk of candidiasis by compromising the immune response against Candida species. Prior to prescribing IL-17 inhibitors, healthcare professionals should comprehensively evaluate patients' medical histories and assess their risk factors. Patients should be educated on the signs and symptoms of candidiasis to facilitate early detection and intervention. Future research should focus on identifying the risk factors associated with candidiasis in patients receiving IL-17 inhibitors. Prospective studies and long-term surveillance are required to explore the impact of specific inhibitors on the incidence and severity of candidiasis and to evaluate the effectiveness of combination therapies, such as concurrent use of IL-17 inhibitors and prophylactic antifungal agents.

7.
Drug Des Devel Ther ; 17: 2259-2271, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37546521

RESUMEN

Purpose: To develop a population pharmacokinetic model describing teicoplanin concentrations in patients hospitalized in intensive care unit (ICU) and to perform Monte Carlo simulations to provide detailed dosing regimens of teicoplanin. Methods: This single-center, prospective, observational study was conducted on 151 patients in ICU with 347 plasma samples. The population pharmacokinetics model was established and various covariates were evaluated. The probability of target attainment (PTA) of various proposal dosing regimens was calculated by Monte Carlo simulations. Results: The two-compartment model adequately described teicoplanin concentration-time data. The estimated glomerular filtration rate (eGFR) associated with systemic clearance (CL) was the only covariate included in the final model. The estimate of CL was 0.838 L/h, with the eGFR adjustment factor of 0.00823. The volume of the central compartment (Vc), inter-compartmental clearance (Q) and volumes of the peripheral compartments (Vp) were 14.4 L, 3.08 L/h and 51.6 L, respectively. The simulations revealed that the standard dosage regimen was only sufficient for the patients with severe renal dysfunction (eGFR ≤ 30 mL/min/1.73 m2) to attain target trough concentration (Cmin, PTA 52.8%). When eGFR > 30 mL/min/1.73 m2, increasing dose and the administration times of loading doses were the preferred options to achieve target Cmin based on the renal function and types of infection. Conclusion: The most commonly used standard dosage regimen was insufficient for all ICU patients. Our study provided detailed dosing regimens of teicoplanin stratified by eGFR and types of infection for ICU patients.


Asunto(s)
Antibacterianos , Teicoplanina , Humanos , Teicoplanina/farmacocinética , Enfermedad Crítica , Estudios Prospectivos , Riñón/fisiología , Pruebas de Sensibilidad Microbiana
8.
J Am Chem Soc ; 145(32): 17995-18006, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37550082

RESUMEN

The acidic oxygen evolution reaction (OER) has long been the bottleneck of proton exchange membrane water electrolyzers given its harsh oxidative and corrosive environments. Herein, we suggest an effective strategy to greatly enhance both the acidic OER activity and stability of Co3O4 spinel by atomic Ru selective substitution on the octahedral Co sites. The resulting highly symmetrical octahedral Ru-O-Co collaborative coordination with strong electron coupling effect enables the direct dioxygen radical coupling OER pathway. Indeed, both experiments and theoretical calculations reveal a thermodynamically breakthrough heterogeneous diatomic oxygen mechanism. Additionally, the active Ru-O-Co units are well-maintained upon the acidic OER thanks to the electron transfer from surrounding electron-enriched tetrahedral Co atoms via bridging oxygen bonds that suppresses the overoxidation and thus dissolution of active Ru and Co species. Consequently, the prepared catalyst, even with a low Ru mass loading of ca. 42.8 µg cm-2, exhibits an attractive acidic OER performance with a low overpotential of 200 mV and a low potential decay rate of 0.45 mV h-1 at 10 mA cm-2. Our work suggests an effective strategy to significantly enhance both the acidic OER activity and stability of low-cost electrocatalysts.

9.
Foods ; 12(13)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37444310

RESUMEN

The effects of different cooking methods (steaming, boiling, air frying, and oven baking) and cooking times (0, 5, 10, 15, and 20 min) on the bioactive components (total phenol, total flavonoid, crude polysaccharides, and eritadenine), color, texture, microstructure, and volatiles in shiitake mushrooms were investigated in this study. Steaming, boiling, and air frying for 5-20 min could decrease the contents of all the four bioactive components in the shiitake mushroom. However, oven baking for 5 min and 10 min showed the highest contents of total phenolics and total flavonoids, respectively. Moreover, the lowest losses of crude polysaccharides and eritadenine were observed for oven baking for 5 min and 15 min, respectively. The lightness of shiitake mushrooms was decreased by all treatments; however, steaming could keep a higher brightness compared with other methods. The microstructure was damaged by all cooking methods, especially air frying for 20 min. Meanwhile, steaming for 20 min decreased the hardness mostly, and there was no significant difference with air frying for 20 min. All cooking treatments decreased the complexity of the flavors and the relative contents of volatile compounds; the lowest contents were found when boiling for 5 min. From these results it can be seen that the physical, histological, and chemical features in shiitake mushroom were influenced by cooking methods and times. In addition, our results provide valuable information for the cooking and processing of shiitake mushrooms and other fungi.

10.
J Appl Microbiol ; 134(7)2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37336594

RESUMEN

AIM: This study aimed to investigate the high-resolution phenotypic and genotypic characterization of extended-spectrum ß-lactamase (ESBL)-producing Escherichia coli strains isolated from hospitalized patients to explore the resistance genes and mobile genetic elements (MGEs) involved in horizontal dissemination. METHODS: Between May and September 2021, a total of 216 ESBL-producing E. coli isolates were recovered from multiple departments. The identification of strains was performed using MALDI-TOF mass spectrometry and PCR, while antibiotic susceptibility testing was carried out using the Vitek 2 COMPACT system to determine resistance patterns, while PCR was used to detect different resistance genes and MGEs. In addition, a conjugation assay was performed to investigate the horizontal gene transfer of resistance genes. Selected isolates underwent whole-genome sequencing (WGS) using the Illumina MiSeq platform. RESULTS: A total of 216 out of 409 E. coli isolates recovered from a tertiary hospital were observed to be ESBL-producing, giving a carriage rate of 52.8%, as determined by phenotypic screening. The most frequent sources of ESBL-producing E. coli isolates were urine (129/216, 59.72%) and blood (50/216, 23.14%). The most prevalent ESBL genes identified were blaCTX-M (60.18%), blaTEM (40.27%), and blaSHV (18.05%). Three E. coli isolates were found to carry the genes blaNDM, mcr-1, and fosA3 genes. The most prevalent MGEs were IS26 (95.37%), Int (87.03%), and IncFIB (76.85%). WGS analysis of eight MDR E. coli strains revealed that these isolates belonged to eight different sequence types (STs) and serotypes and were found to harbor multiple plasmid replicons and virulence factors. CONCLUSION: This study highlights a high incidence of antibiotic resistance genes and MGEs associated with the dissemination of ESBLs and other resistance genes.


Asunto(s)
Infecciones por Escherichia coli , Escherichia coli , Humanos , Antibacterianos/farmacología , beta-Lactamasas/genética , Infecciones por Escherichia coli/epidemiología , Farmacorresistencia Bacteriana Múltiple/genética
11.
Curr Res Food Sci ; 6: 100519, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37266413

RESUMEN

In this study, phenolic-rich extracts from Sanghuangporus vaninii (SHE) were prepared, the phenolic profile and main phenolic compound content of SHE were studied by UPLC-Orbitrap-MS, and the antioxidant and antiproliferation activities of SHE were evaluated. The results showed that the total polyphenol content and the total flavonoid content of SHE were 42.420 ± 0.011 mg GAE/g EW and 8.504 ± 0.205 mg RE/g EW, respectively. Moreover, 14 phenolic acids and 8 flavonoids in SHE were identified, among which, the major polyphenols were protocatechualdehyde (394.68 µg/g), protocatechuic acid (196.88 µg/g), caffeic acid (96.11 µg/g), L-phenylalanine (12.72 µg/g) and (+)-taxifolin (8.59 µg/g). SHE showed strong radical scavenging, anti-lipid peroxidation and anti-DNA damage capacity in vitro. SHE could effectively induce HepG2 cell apoptosis via the caspases-dependent mitochondrial apoptotic pathway and arrest the cell cycle in the G0/G1 phase. The present study suggested that S. vaninii could be a valuable source of natural antioxidative and antiproliferative ingredients.

12.
Int J Biol Macromol ; 244: 125426, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37330093

RESUMEN

The carbon source, an essential factor for submerged culture, affects fungal polysaccharides production, structures, and activities. This study investigated the impact of carbon sources, including glucose, fructose, sucrose, and mannose, on mycelial biomass and the production, structural characterization, and bioactivities of intracellular polysaccharides (IPS) produced by submerged culture of Auricularia auricula-judae. Results showed that mycelial biomass and IPS production varied with different carbon sources, where using glucose as the carbon source produced the highest mycelial biomass (17.22 ± 0.29 g/L) and IPS (1.62 ± 0.04 g/L). Additionally, carbon sources were found to affect the molecular weight (Mw) distributions, monosaccharide compositions, structural characterization, and activities of IPSs. IPS produced with glucose as the carbon source exhibited the best in vitro antioxidant activities and had the strongest protection against alloxan-damaged islet cells. Correlation analysis revealed that Mw correlated positively with mycelial biomass (r = 0.97) and IPS yield (r = 1.00), while IPS antioxidant activities correlated positively with Mw and negatively with mannose content; the protective activity of IPS was positively related to its reducing power. These findings indicate a critical structure-function relationship for IPS and lay the foundation for utilizing liquid-fermented A. aruicula-judae mycelia and the IPS in functional food production.


Asunto(s)
Antioxidantes , Polisacáridos Fúngicos , Antioxidantes/farmacología , Biomasa , Manosa , Carbono , Polisacáridos/química , Polisacáridos Fúngicos/farmacología , Polisacáridos Fúngicos/química , Glucosa
13.
Front Microbiol ; 14: 1106157, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37152760

RESUMEN

Object: Hospital sewage have been associated with incorporation of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) into microbes, which is considered as a key indicator for the spread of antimicrobial resistance (AMR). The compositions of dental waste water (DWW) contain heavy metals, the evolution of AMR and its effects on the water environment in the context of heavy metal environment have not been seriously investigated. Thus, our major aims were to elucidate the evolution of AMR in DWW. Methods: DWW samples were collected from a major dental department. The presence of microbial communities, ARGs, and MGEs in untreated and treated (by filter membrane and ozone) samples were analyzed using metagenomics and bioinformatic methods. Results: DWW-associated resistomes included 1,208 types of ARGs, belonging to 29 antibiotic types/subtypes. The most abundant types/subtypes were ARGs of multidrug resistance and of antibiotics that were frequently used in the clinical practice. Pseudomonas putida, Pseudomonas aeruginosa, Chryseobacterium indologenes, Sphingomonas laterariae were the main bacteria which hosted these ARGs. Mobilomes in DWW consisted of 93 MGE subtypes which belonged to 8 MGE types. Transposases were the most frequently detected MGEs which formed networks of communications. For example, ISCrsp1 and tnpA.5/4/11 were the main transposases located in the central hubs of a network. These significant associations between ARGs and MGEs revealed the strong potential of ARGs transmission towards development of antimicrobial-resistant (AMR) bacteria. On the other hand, treatment of DWW using membranes and ozone was only effective in removing minor species of bacteria and types of ARGs and MGEs. Conclusion: DWW contained abundant ARGs, and MGEs, which contributed to the occurrence and spread of AMR bacteria. Consequently, DWW would seriously increase environmental health concerns which may be different but have been well-documented from hospital waste waters.

14.
Food Sci Biotechnol ; 32(7): 987-996, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37123066

RESUMEN

In this study, the influence of γ-irradiation with different dose (0, 4, 8, and 16 kGy) on chemical composition, physicochemical features and bioactivities of polysaccharides extracted from Lentinula edodes (LEP) were investigated. The carbohydrate content (from 59.47 to 70.96%), the solubility, the ⋅OH and DPPH scavenging ability of LEP increased with the increased γ-irradiation dose, while the protein content, the weight-average and number-average molecular weight of LEP were significantly decreased with the increased γ-irradiation dose. Moreover, γ-irradiation treatment caused LEP color changes and surface topography destroyed. γ-Irradiated LEP showed higher hypoglycemic activities in vitro than that of non-irradiated LEP. Moreover, γ-irradiated LEP had better proliferation promoting effects on Lactobacillus rhamnosus and L. plantarum. These results showed that γ-irradiation treatment changes the physicochemical features of LEP, thus affects its antioxidant, hypoglycemic and prebiotic properties, which suggests that γ-irradiated LEP has potential application in the pharmaceutical industries and functional foods. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-022-01234-5.

15.
Food Chem (Oxf) ; 6: 100172, 2023 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-37213208

RESUMEN

To better determine how gamma irradiation (GI) improves abiotic stress resistance, a transcriptome analysis of postharvest L. edodes in response to 1.0 kGy GI was conducted, and further the underlying mechanism of GI in delaying quality deterioration over 20 d of cold storage was explored. The results suggested that GI was involved in multiple metabolic processes in irradiated postharvest L. edodes. In comparison with the control group, the GI group contained 430 differentially expressed genes, including 151 upregulated genes and 279 downregulated genes, which unveiled characteristic expression profiles and pathways. The genes involved in the pentose phosphate pathway were mainly upregulated and the expression level of the gene encoding deoxy-D-gluconate 3-dehydrogenase was 9.151-fold higher. In contrast, the genes related to other energy metabolism pathways were downregulated. Concurrently, GI inhibited the expression of genes associated with delta 9-fatty acid desaturase, ribosomes, and HSP20; thus, GI helped postpone the degradation of lipid components, suppress transcriptional metabolism and regulate the stress response. Additionally, the metabolic behavior of DNA repair induced by GI intensified by noticeable upregulation. These regulatory effects could play a potential and nonnegligible role in delaying the deterioration of L. edodes quality. The results provide new information on the regulatory mechanism of postharvest L. edodes when subjected to 1.0 kGy GI during cold storage.

16.
Environ Pollut ; 327: 121539, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37019259

RESUMEN

Overconsumption of antibiotics is an immediate cause for the emergence of antimicrobial resistance (AMR) and antibiotic resistant bacteria (ARB), though its environmental impact remains inadequately clarified. There is an urgent need to dissect the complex links underpinning the dynamic co-evolution of ARB and their resistome and mobilome in hospital sewage. Metagenomic and bioinformatic methods were employed to analyze the microbial community, resistome and mobilome in hospital sewage, in relation to data on clinical antibiotic use collected from a tertiary-care hospital. In this study, resistome (1,568 antibiotic resistance genes, ARGs, corresponding to 29 antibiotic types/subtypes) and mobilome (247 types of mobile genetic elements, MGEs) were identified. Networks connecting co-occurring ARGs with MGEs encompass 176 nodes and 578 edges, in which over 19 types of ARGs had significant correlations with MGEs. Prescribed dosage and time-dependent antibiotic consumption were associated with the abundance and distributions of ARGs, and conjugative transfer of ARGs via MGEs. Variation partitioning analyses show that effects of conjugative transfer were most likely the main contributors to transient propagation and persistence of AMR. We have presented the first evidence supporting idea that use of clinical antibiotics is a potent driving force for the development of co-evolving resistome and mobilome, which in turn supports the growth and evolution of ARB in hospital sewage. The use of clinical antibiotics calls for greater attention in antibiotic stewardship and management.


Asunto(s)
Antibacterianos , Microbiota , Aguas del Alcantarillado , Antagonistas de Receptores de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Antibacterianos/farmacología , Bacterias/genética , Genes Bacterianos , Aguas del Alcantarillado/microbiología , Metagenoma
17.
Small ; 19(26): e2207919, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36938911

RESUMEN

Constructing active heterointerfaces is powerful to enhance the electrochemical performances of transition metal dichalcogenides, but the interface density regulation remains a huge challenge. Herein, MoO2 /MoS2 heterogeneous nanorods are encapsulated in nitrogen and sulfur co-doped carbon matrix (MoO2 /MoS2 @NSC) by controllable sulfidation. MoO2 and MoS2 are coupled intimately at atomic level, forming the MoO2 /MoS2 heterointerfaces with different distribution density. Strong electronic interactions are triggered at these MoO2 /MoS2 heterointerfaces for enhancing electron transfer. In alkaline media, the optimal material exhibits outstanding hydrogen evolution reaction (HER) performances that significantly surpass carbon-covered MoS2 nanorods counterpart (η10 : 156 mV vs 232 mV) and most of the MoS2 -based heterostructures reported recently. First-principles calculation deciphers that MoO2 /MoS2 heterointerfaces greatly promote water dissociation and hydrogen atom adsorption via the O-Mo-S electronic bridges during HER process. Moreover, benefited from the high pseudocapacitance contribution, abundant "ion reservoir"-like channels, and low Na+ diffusion barrier appended by high-density MoO2 /MoS2 heterointerfaces, the material delivers high specific capacity of 888 mAh g-1 , remarkable rate capability and cycling stability of 390 cycles at 0.1 A g-1 as the anode of sodium ion battery. This work will undoubtedly light the way of interface density engineering for high-performance electrochemical energy conversion and storage systems.

18.
Angew Chem Int Ed Engl ; 62(19): e202300390, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-36912576

RESUMEN

The traditional technologies for industrial and agricultural effluent treatment are often energy-intensive. Herein, we suggest an electrochemical redox strategy for spontaneous and simultaneous decontamination of wastewater and generation of both fuels and electricity at low cost. Using hydrazine and nitrate effluents as a demonstration, we propose a hydrazine-nitrate flow battery (HNFB) that can efficiently purify the wastewater and meanwhile generate both ammonia fuel and electricity with the assistance of our developed bimetallic RuCo precatalyst. Specifically, the battery delivers a peak power density of 12 mW cm-2 and continuously operates for 20 h with an ammonia yield rate of ca. 0.38 mmol h-1 cm-2 under 100 mA cm-2 . The generated electricity can further drive a hydrazine electrolyzer to produce hydrogen fuel. Our work provides an alternative pathway to purify wastewater and generate high value-added fuels at low cost.

19.
Microb Drug Resist ; 29(2): 51-58, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36577022

RESUMEN

Linezolid has been reported to restore erythromycin susceptibility in erythromycin-resistant Staphylococcus aureus. This phenomenon has not been reported in enterococci and the mechanisms involved therein are still unknown. The purpose of this study was to investigate the mechanisms involved and the effect of combining linezolid with erythromycin on erythromycin-resistant enterococci. Checkerboard techniques were used to determine drug interactions, and 12 of 14 isolates showed a synergistic effect between erythromycin and linezolid (fractional inhibitory concentration <0.5). We observed that the erm(B) gene, which encodes a dimethyltransferase responsible for erythromycin resistance, was expressed from transposon Tn1545 in the tested erythromycin-resistant enterococci. After exposure to linezolid, erm(B)-mediated rRNA dimethylation at A2071 could not be detected, and the erm(B) gene was lost following acquisition of erythromycin susceptibility. Thus, in conclusion, linezolid combined with erythromycin exerts a synergistic effect against erythromycin-resistant enterococci. Linezolid treatment suppressed erm(B)-mediated rRNA dimethylation at A2071, which could lead to loss of the erm(B) gene.


Asunto(s)
Eritromicina , Staphylococcus aureus Resistente a Meticilina , Linezolid/farmacología , Eritromicina/farmacología , Antibacterianos/farmacología , Enterococcus/genética , Farmacorresistencia Bacteriana/genética , Pruebas de Sensibilidad Microbiana , ARN Ribosómico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...