Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plant Physiol ; 2024 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-39431534

RESUMEN

Hydrogen sulfide (H2S) is a signaling molecule that regulates plant senescence. In this study, we found that H2S delays dark-induced senescence in tomato (Solanum lycopersicum) leaves. Transcriptome and RT-qPCR analyses revealed an Ethylene Response Factor ERF.D3 is quickly induced by H2S. H2S also persulfidated ERF.D3 at amino acid residues C115 and C118. CRISPR/Cas9-mediated gene editing and gene overexpression analyses showed that ERF.D3 negatively regulates leaf senescence and fruit ripening. Abscisic acid (ABA) levels were reduced by ERF.D3 overexpression, suggesting ERF.D3 might regulate ABA metabolism. Additionally, the abscisic acid 8'-hydroxylase-encoding gene CYP707A2, which is required for ABA degradation, was identified as an ERF.D3 target gene through transcriptome data, RT-qPCR, dual-luciferase reporter assays and electrophoretic mobility shift assays. ERF.D3 persulfidation enhanced its transcriptional activity towards CYP707A2. Moreover, the E3 ligase RNF217 ubiquitinated ERF.D3, which may accelerate fruit ripening during the late stage of fruit development. Overall, our study provides valuable insights into the roles of a H2S-responsive ERF.D3 and its persulfidation state in delaying leaf senescence and fruit ripening and provides a link between H2S and ABA degradation.

2.
Plant Physiol Biochem ; 214: 108913, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38986239

RESUMEN

Calcium acts as a secondary messenger in plants and is essential for plant growth and development. However, studies on the pathway of aroma synthesis in 'Nanguo' pear (Pyrus ussriensis Maxim.) are scarce. In this study, a bioinformatics analysis of transcriptomic data from calcium-treated 'Nanguo' pear was performed, which identified two fatty acid desaturases, PuFAD2 and PuFAD3, and eight AP2/ERF transcription factors, all exhibiting the same expression patterns. Transient expression experiments showed overexpression of PuFAD2 and PuFAD3 significantly increased the levels of aromatic substrates linoleic acid, hexanal, linolenic acid, and (E)-2-hexenal, but RNAi (RNA interference) had the opposite expression. Promoter sequences analysis revealed that PuFAD2 and PuFAD3 have ERE (estrogen response element) motifs on their promoters. The strongest activation of PuFAD2 by PuERF008 was verified using a dual-luciferase reporting system. Additionally, yeast one-hybrid and electrophoretic mobility shift assays revealed PuERF008 could active PuFAD2. Transient overexpression and RNAi analyses of PuERF008 showed a strong correlation with the expression of PuFAD2. This study provides insights into the process of aroma biosynthesis in 'Nanguo' pear and offers a theoretical basis for elucidating the role of calcium signaling in aroma synthesis.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Pyrus , Pyrus/metabolismo , Pyrus/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Señalización del Calcio , Ácidos Grasos/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Regiones Promotoras Genéticas/genética , Ácido Graso Desaturasas/metabolismo , Ácido Graso Desaturasas/genética , Calcio/metabolismo , Odorantes
3.
Plant Physiol ; 196(1): 210-227, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-38728423

RESUMEN

Cysteine desulfhydrase catalyses the generation of the signaling molecule hydrogen sulfide (H2S) in plants. In this study, we found that H2S can inhibit tomato (Solanum lycopersicum) fruit ripening and SlWRKY6 undergoes differential protein persulfidation in SlLCD1-overexpressing leaves. Then, further study indicated that SlWRKY6 could be persulfidated by H2S at Cys396. By construction of slwrky6 mutants and SlWRKY6-OE lines, we found that SlWRKY6 positively regulates leaf senescence and fruit ripening by activating the transcription of ripening-related genes STAYGREEN 1 (SlSGR1) and Senescence-Associated Gene 12 (SlSAG12). In addition, SlWRKY6 interacted with kinase SlMAPK4 and was phosphorylated at Ser33. Dual-luciferase transient expression assays and electrophoretic mobility shift assays indicated that SlWRKY6 persulfidation attenuated its transcriptional regulation of target genes SlSGR1 and SlSAG12, whereas SlWRKY6 phosphorylation by SlMAPK4 activated the transcription of target genes to promote fruit ripening. Moreover, we provided evidence that SlWRKY6 persulfidation attenuated its SlMAPK4-mediated phosphorylation to inhibit tomato fruit ripening. By transient expression of SlWRKY6, SlWRKY6C396A, SlWRKY6S33A, and SlWRKY6S33D in slwrky6 fruits, we found that SlWRKY6 persulfidation attenuated the expression of SlSGR1 and SlSAG12 thereby delaying tomato fruit ripening, while SlWRKY6 phosphorylation increased the expression of target genes. As tomato fruits ripened, endogenous H2S production decreased, while SlMAPK4 expression increased. Therefore, our findings reveal a model in which SlWRKY6 persulfidation due to higher endogenous H2S levels in un-ripened fruit inhibits its ability to activate SlSGR1 and SlSAG12 expression, while SlWRKY6 phosphorylation by SlMAPK4 activates its transcriptional activity, thereby promoting tomato fruit ripening.


Asunto(s)
Frutas , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Solanum lycopersicum , Factores de Transcripción , Solanum lycopersicum/genética , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/metabolismo , Frutas/genética , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Fosforilación , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Sulfuro de Hidrógeno/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Plantas Modificadas Genéticamente
4.
Plants (Basel) ; 13(4)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38498463

RESUMEN

Hydrogen peroxide (H2O2) is relatively stable among ROS (reactive oxygen species) and could act as a signal in plant cells. In the present work, detached tomato leaves were treated with exogenous H2O2 at 10 mmol/L for 8 h to study the mechanism of how H2O2 regulates leaf senescence. The data indicated that H2O2 treatment significantly accelerated the degradation of chlorophyll and led to the upregulation of the expression of leaf senescence-related genes (NYC1, PAO, PPH, SGR1, SAG12 and SAG15) during leaf senescence. H2O2 treatment also induced the accumulation of H2O2 and malondialdehyde (MDA), decreased POD and SOD enzyme activities and inhibited H2S production by reducing the expression of LCD1/2 and DCD1/2. A correlation analysis indicated that H2O2 was significantly and negatively correlated with chlorophyll, the expression of leaf senescence-related genes, and LCD1/2 and DCD1/2. The principal component analysis (PCA) results show that H2S showed the highest load value followed by O2•-, H2O2, DCD1, SAG15, etc. Therefore, these findings provide a basis for studying the role of H2O2 in regulating detached tomato leaf senescence and demonstrated that H2O2 plays a positive role in the senescence of detached leaves by repressing antioxidant enzymes and H2S production.

5.
Int J Mol Sci ; 25(3)2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38339150

RESUMEN

As a typical climacteric fruit, tomato (Solanum lycopersicum) is widely used for studying the ripening process. The negative regulation of tomato fruits by transcription factor SlNAC1 has been reported, but its regulatory network was unclear. In the present study, we screened a transcription factor, SlERF109-like, and found it had a stronger relationship with SlNAC1 at the early stage of tomato fruit development through the use of transcriptome data, RT-qPCR, and correlation analysis. We inferred that SlERF109-like could interact with SlNAC1 to become a regulatory complex that co-regulates the tomato fruit ripening process. Results of transient silencing (VIGS) and transient overexpression showed that SlERF109-like and SlNAC1 could regulate chlorophyll degradation-related genes (NYC1, PAO, PPH, SGR1), carotenoids accumulation-related genes (PSY1, PDS, ZDS), ETH-related genes (ACO1, E4, E8), and cell wall metabolism-related genes expression levels (CEL2, EXP, PG, TBG4, XTH5) to inhibit tomato fruit ripening. A dual-luciferase reporter and yeast one-hybrid (Y1H) showed that SlNAC1 could bind to the SlACO1 promoter, but SlERF109-like could not. Furthermore, SlERF109-like could interact with SlNAC1 to increase the transcription for ACO1 by a yeast two-hybrid (Y2H) assay, a luciferase complementation assay, and a dual-luciferase reporter. A correlation analysis showed that SlERF109-like and SlNAC1 were positively correlated with chlorophyll contents, and negatively correlated with carotenoid content and ripening-related genes. Thus, we provide a model in which SlERF109-like could interact with SlNAC1 to become a regulatory complex that negatively regulates the tomato ripening process by inhibiting SlACO1 expression. Our study provided a new regulatory network of tomato fruit ripening and effectively reduced the waste of resources.


Asunto(s)
Etilenos , Solanum lycopersicum , Carotenoides/metabolismo , Clorofila/metabolismo , Etilenos/metabolismo , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Luciferasas/metabolismo , Proteínas de Plantas/metabolismo , Saccharomyces cerevisiae/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/crecimiento & desarrollo , Factores de Transcripción/metabolismo
6.
Hortic Res ; 10(8): uhad140, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37575657

RESUMEN

Fruit quality is defined by attributes that give value to a commodity. Flavor, texture, nutrition, and shelf life are key quality traits that ensure market value and consumer acceptance. In pear fruit, soluble sugars, organic acids, amino acids, and total flavonoids contribute to flavor and overall quality. Transcription factors (TFs) regulate the accumulation of these metabolites during development or in response to the environment. Here, we report a novel TF, PpbZIP44, as a positive regulator of primary and secondary metabolism in pear fruit. Analysis of the transient overexpression or RNAi-transformed pear fruits and stable transgenic tomato fruits under the control of the fruit-specific E8 promoter demonstrated that PpZIP44 substantially affected the contents of soluble sugar, organic acids, amino acids, and flavonoids. In E8::PpbZIP44 tomato fruit, genes involved in carbohydrate metabolism, amino acid, and flavonoids biosynthesis were significantly induced. Furthermore, in PpbZIP44 overexpression or antisense pear fruits, the expression of genes in the related pathways was significantly impacted. PpbZIP44 directly interacted with the promoter of PpSDH9 and PpProDH1 to induce their expression, thereby depleting sorbitol and proline, decreasing citrate and malate, and enhancing fructose contents. PpbZIP44 also directly bound to the PpADT and PpF3H promoters, which led to the carbon flux toward phenylalanine metabolites and enhanced phenylalanine and flavonoid contents. These findings demonstrate that PpbZIP44 mediates multimetabolism reprogramming by regulating the gene expression related to fruit quality compounds.

7.
Hortic Res ; 10(3): uhad014, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36968183

RESUMEN

Hydrogen sulfide (H2S) is involved in multiple processes during plant growth and development. D-cysteine desulfhydrase (DCD) can produce H2S with D-cysteine as the substrate; however, the potential developmental roles of DCD have not been explored during the tomato lifecycle. In the present study, SlDCD2 showed increasing expression during fruit ripening. Compared with the control fruits, the silencing of SlDCD2 by pTRV2-SlDCD2 accelerated fruit ripening. A SlDCD2 gene-edited mutant was constructed by CRISPR/Cas9 transformation, and the mutant exhibited accelerated fruit ripening, decreased H2S release, higher total cysteine and ethylene contents, enhanced chlorophyll degradation and increased carotenoid accumulation. Additionally, the expression of multiple ripening-related genes, including NYC1, PAO, SGR1, PDS, PSY1, ACO1, ACS2, E4, CEL2, and EXP was enhanced during the dcd2 mutant tomato fruit ripening. Compared with the wild-type fruits, SlDCD2 mutation induced H2O2 and malondialdehyde (MDA) accumulation in fruits, which led to an imbalance in reactive oxygen species (ROS) metabolism. A correlation analysis indicated that H2O2 content was strongly positively correlated with carotenoids content, ethylene content and ripening-related gene expression and negatively correlated with the chlorophyll content. Additionally, the dcd2 mutant showed earlier leaf senescence, which may be due to disturbed ROS homeostasis. In short, our findings show that SlDCD2 is involved in H2S generation and that the reduction in endogenous H2S production in the dcd2 mutant causes accelerated fruit ripening and premature leaf senescence. Additionally, decreased H2S in the dcd2 mutant causes excessive H2O2 accumulation and increased ethylene release, suggesting a role of H2S and SlDCD2 in modulating ROS homeostasis and ethylene biosynthesis.

8.
Plant Physiol ; 192(3): 1892-1912, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-36732887

RESUMEN

Red-skinned pears (Pyrus L.) are preferred to consumers for their attractive color and abundant anthocyanins. Pyrus ETHYLENE RESPONSE FACTOR 3 (PyERF3) positively regulates anthocyanin biosynthesis through interacting with Pyrus myeloblastosis family 114 (PyMYB114) and Pyrus basic helix-loop-helix 3 (PybHLH3) in red-skinned pears. However, the role of APETALA2/ethylene response factors (AP2/ERFs), which negatively regulate anthocyanin biosynthesis, remains unclear in red-skinned pears. Here, we validated that 2 AP2/ERFs, PyERF4.1 and PyERF4.2, screened from the transcriptome data of 'Starkrimson' pear (Pyrus communis L.) and its green mutant, inhibit anthocyanin biosynthesis in transgenic pear calli, as well as in overexpression and gene-edited tomato (Solanum lycopersicum) fruits. Meanwhile, the co-transformation of PyERF4.1/PyERF4.2 with PyERF3-PyMYB114-PybHLH3 inhibited anthocyanin biosynthesis in pear fruits and strawberry (Fragaria vesca) receptacles. Further assays showed that PyMYB114 activated the transcription of PyERF4.1/PyERF4.2; PyERF4.1/PyERF4.2 then interacted with PyERF3 to affect the stability of the PyERF3-PyMYB114-PybHLH3 complex, thereby inhibiting the transcription of the anthocyanin biosynthesis gene Pyrus anthocyanidin synthase (PyANS). Furthermore, deletion of the ERF-associated-amphiphilic repression (EAR) motif eliminated the inhibitory effect of PyERF4.1/PyERF4.2 on anthocyanin biosynthesis, and a mutation of the PyERF4.2-EAR motif (LxLxM to LxLxL) strengthened the inhibitory effect, demonstrating that the EAR motif is indispensable for the inhibitory effect of PyERF4.1/PyERF4.2 on anthocyanin biosynthesis in pears. Our study has shed light on a feedback regulatory loop mechanism that balances the excessive accumulation of anthocyanins in red-skinned pears, providing insights into the regulatory mechanism of anthocyanin biosynthesis and the regulatory network of coloration in red-skinned pears.


Asunto(s)
Etilenos , Pyrus , Factores de Transcripción , Antocianinas , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pyrus/genética , Pyrus/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Plant Physiol ; 192(1): 616-632, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36732924

RESUMEN

Hydrogen sulfide (H2S) is a gaseous signaling molecule reported to play multiple roles in fruit ripening. However, the molecular mechanisms underlying H2S-mediated delay in fruit ripening remain to be established. Here, the gene encoding a WRKY transcription factor, WRKY71, was identified as substantially upregulated in H2S-treated tomato (Solanum lycopersicum) via transcriptome profiling. The expression of WRKY71 was negatively associated with that of CYANOALANINE SYNTHASE1 (CAS1). Transient and stable genetic modification experiments disclosed that WRKY71 acts as a repressor of the tomato ripening process. CAS1 appears to play an opposite role, based on the finding that the ripening process was delayed in the cas1 mutant and accelerated in CAS1-OE tomatoes. Dual-luciferase reporter assay, yeast one-hybrid, electrophoretic mobility shift assay, and transient transformation experiments showed that WRKY71 bound to the CAS1 promoter and suppressed its activation. Moreover, the persulfidation of WRKY71 enhanced its binding ability to the CAS1 promoter. Data from luciferase complementation and Y2H assays confirmed that WRKY71 interacts with a BOI-related E3 ubiquitin-protein ligase 3 (BRG3) and is ubiquitinated in vitro. Further experiments showed that modification of BRG3 via persulfidation at Cys206 and Cys212 led to reduced ubiquitination activity. Our findings support a model whereby BRG3 undergoes persulfidation at Cys206 and Cys212, leading to reduced ubiquitination activity and decreased interactions with the WRKY71 transcript, with a subsequent increase in binding activity of the persulfidated WRKY71 to the CAS1 promoter, resulting in its transcriptional inhibition and thereby delayed ripening of tomatoes. Our collective findings provide insights into a mechanism of H2S-mediated regulation of tomato fruit ripening.


Asunto(s)
Solanum lycopersicum , Solanum lycopersicum/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Regiones Promotoras Genéticas/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Frutas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Etilenos/metabolismo
10.
Plant Physiol ; 192(3): 2185-2202, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-36797801

RESUMEN

Hydrogen sulfide (H2S) is a gaseous signaling molecule that delays color change during fruit ripening. Whether H2S affects anthocyanin biosynthesis in red-skinned pears (Pyrus L.) remains unclear. Here, we found that H2S substantially inhibits anthocyanin accumulation in red-skinned pears and the expression of several genes encoding transcription factors is affected in response to H2S signaling. For example, PyMYB10 and PyMYB73 were down-regulated, whereas PyMYB114 and PyMYB6 were up-regulated. Bioinformatics analysis showed that PyMYB73 and PyMYB6, each containing an EAR motif, may negatively regulate anthocyanin accumulation. Transient expression analysis showed that PyMYB73 substantially promotes anthocyanin biosynthesis by co-transforming with PyMYB10/PyMYB114 + PybHLH3; however, PyMYB6 inhibited anthocyanin biosynthesis in strawberry (Fragaria vesca) receptacles and pear fruits, and PyMYB73 interacted with PyMYB10 and PyMYB6 but not PyMYB114 or PybHLH3. Further investigation showed that Cys194 and Cys218 of PyMYB10 were modified by persulfidation and that PyMYB10Cys218Ala substantially increased anthocyanin accumulation by a transient transformation system. Co-transformation of PyMYB10Cys218Ala + PyMYB73/PyMYB6 also promoted anthocyanin accumulation in pear fruits. Yeast two-hybrid assays showed that the mutation of PyMYB10 did not affect the interaction between PyMYB10 and PyMYB73, but it inhibited interaction with PyMYB6. Moreover, H2S weakened the interaction between PyMYB10 and PyMYB73 but enhanced the interaction with PyMYB6. Thus, we provided a model in which PyMYB10 undergoes persulfidation at Cys218, enhancing the interaction with PyMYB6 and reducing the interaction with PyMYB73. These subsequently results in lower expression of the anthocyanin biosynthesis-related genes Pyrus dihydroflavonol 4-reductase (PyDFR), Pyrus anthocyanidin synthase (PyANS), Pyrus UDP-glucose: flavonoid 3-glucosyl transferase (PyUFGT) and Pyrus glutathione S-transferase (PyGST), thereby inhibiting anthocyanin accumulation in red-skinned pears. Our findings provided a molecular mechanism for H2S-mediated anthocyanin biosynthesis in red-skinned pears.


Asunto(s)
Pyrus , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Pyrus/genética , Pyrus/metabolismo , Antocianinas/metabolismo , Regulación de la Expresión Génica de las Plantas , Frutas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
11.
Int J Mol Sci ; 23(20)2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36293095

RESUMEN

Ethylene is a key phytohormone that regulates the ripening of climacteric fruits, and methionine is an indirect precursor of ethylene. However, whether methionine synthase plays a role in fruit ripening in Solanum lycopersicum (tomato) is still unknown. In this study, we find that a tomato methionine synthase (named SlMS1), which could be repressed at the transcriptional level by hydrogen sulfide (H2S), acts as a positive regulator for tomato fruit ripening. By a bioinformatics analysis, it is found that SlMS1 and SlMS2 in tomato are highly homologous to methionine synthases in Arabidopsis thaliana. The expression pattern of SlMS1 and SlMS2 is analyzed in tomato, and SlMS1 expression is up-regulated during fruit ripening, suggesting its potential role in regulating fruit ripening. A potential bipartite nuclear localization signal is found in the amino acid sequence of SlMS1; thus, SlMS1 is tagged with GFP and observed in the leaves of Nicotiana benthamiana. Consistently, SlMS1-GFP shows strong nuclear localization and also cytoplasmic localization. The role of SlMS1 in regulating fruit ripening is investigated in tomato fruit by transient silencing (virus-induced gene silencing, VIGS) and transient overexpression. The results show that SlMS1 silencing causes delayed fruit ripening, evidenced by more chlorophyll and less carotenoid accumulation, while SlMS1 overexpression accelerates fruit ripening significantly compared with control. Further investigation shows that SlMS1 overexpression could up-regulate the expression of carotenoid-synthesis-related genes (PSY1, PDS, ZDS), chlorophyll-degradation-related genes (NYC1, PAO, PPH, SGR1), cell-wall-metabolism-related genes (CEL2, EXP, PG, TBG4, XTH5) and ethylene-synthesis-pathway-related genes (ACO1, ACO3, ACS2), while SlMS1 silencing causes the opposite results. The correlation analysis indicates that SlMS1 expression is negatively correlated with chlorophyll content and positively correlated with carotenoid and ripening-related gene expressions. Taken together, our data suggest that SlMS1 is a positive regulator of tomato fruit ripening and a possible target gene for the ripening-delaying effect of H2S.


Asunto(s)
Sulfuro de Hidrógeno , Solanum lycopersicum , Solanum lycopersicum/metabolismo , Frutas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Sulfuro de Hidrógeno/metabolismo , 5-Metiltetrahidrofolato-Homocisteína S-Metiltransferasa/genética , Señales de Localización Nuclear/genética , Proteínas de Plantas/metabolismo , Etilenos/metabolismo , Carotenoides/metabolismo , Clorofila/metabolismo , Metionina/metabolismo , Hidrógeno/metabolismo , Sulfuros/metabolismo
12.
BMC Plant Biol ; 22(1): 71, 2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35176994

RESUMEN

BACKGROUND: Calcium (Ca) deficiency can cause apple bitter pit, reduce the quality and shelf life. WRKY transcription factors play essential role in plant response to multiple disorders. However, the underlying mechanisms causing bitter pit in apple fruit due to Ca deficiency during storage is extremely limited. RESULTS: In the present study, the nutritional metabolites and reactive oxygen species (ROS) were compared in Ca-deficient and healthy apple fruit (CK) during storage. Results showed that Ca-deficient apples sustained significantly higher production of ROS, PPO activity, flavonoids, total phenol, total soluble solids (TSS), and sucrose contents, but the contents of Ca, H2O2, titratable acids (TA), glucose and fructose were significantly lower than those of CK during storage. Principal component analysis (PCA) showed that TSS, •O2-, PPO, malondialdehyde (MDA) and Ca were the main factors, and TSS had a positive correlation with sucrose. Furthermore, transcriptome analysis revealed that WRKYs were co-expressed with sucrose metabolism-related enzymes (SWEETs, SS, SPS). qRT-PCR and correlation analysis indicated that MdWRKY75 was correlated positively with MdSWEET1. Moreover, transient overexpression of MdWRKY75 could significantly increase the sucrose content and promote the expression of MdSWEET1 in apple fruit. CONCLUSIONS: Calcium deficiency could decrease antioxidant capacity, accelerate nutritional metabolism and up-regulate the expression of WRKYs in apple with bitter pit. Overexpression of MdWRKY75 significantly increased sucrose accumulation and the expression of MdSWEET1. These findings further strengthened knowledge of the basic molecular mechanisms in calcium deficiency apple flesh and contributed to improving the nutritional quality of apple fruit.


Asunto(s)
Malus/genética , Malus/metabolismo , Proteínas de Plantas/genética , Sacarosa/metabolismo , Factores de Transcripción/genética , Ácido Ascórbico/metabolismo , Calcio/metabolismo , Flavonoides/metabolismo , Almacenamiento de Alimentos , Frutas/genética , Frutas/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Peróxido de Hidrógeno/metabolismo , Fenoles/metabolismo , Proteínas de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Semillas , Factores de Transcripción/metabolismo
13.
Hortic Res ; 92022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-35031796

RESUMEN

Pear, belonging to the genus Pyrus, is one of the most economically important temperate fruit crops. Pyrus is an important genus of the Rosaceae family, subfamily Maloideae, and has at least 22 different species with over 5000 accessions maintained or identified worldwide. With the release of draft whole-genome sequences for Pyrus, opportunities for pursuing studies on the evolution, domestication, and molecular breeding of pear, as well as for conducting comparative genomics analyses within the Rosaceae family, have been greatly expanded. In this review, we highlight key advances in pear genetics, genomics, and breeding driven by the availability of whole-genome sequences, including whole-genome resequencing efforts, pear domestication, and evolution. We cover updates on new resources for undertaking gene identification and molecular breeding, as well as for pursuing functional validation of genes associated with desirable economic traits. We also explore future directions for "pear-omics".

14.
Int J Mol Sci ; 22(23)2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34884817

RESUMEN

Calcium deficiency usually causes accelerated quality deterioration in postharvest fruit, whereas the underlining mechanism is still unclear. Here, we report that calcium deficiency induced the development of bitter pit on the surface of apple peels compared with the healthy appearance in control apples during postharvest storage. Physiological analysis indicates that calcium-deficient peels contained higher levels of superoxide anion (O2•-), malondialdehyde (MDA), total phenol, flavonoid contents and polyphenol oxidase (PPO) activity, and reduced calcium, H2S production, anthocyanin, soluble protein content, and peroxidase (POD) activity compared with those in calcium-sufficient peels. The principal component analysis (PCA) results show that calcium content, ROS, and H2S production were the main factors between calcium-deficient and calcium-sufficient apple peels. Transcriptome data indicated that four calmodulin-like proteins (CMLs), seven AP2/ERFs, and three bHLHs transcripts were significantly differentially expressed in calcium-deficient apple peels. RT-qPCR and correlation analyses further revealed that CML5 expression was significantly positively correlated with the expression of ERF2/17, bHLH2, and H2S production related genes. In addition, transcriptional co-activation of CML5 by ERF2 and bHLH2 was demonstrated by apple transient expression assays and dual-luciferase reporter system experiments. Therefore, these findings provide a basis for studying the molecular mechanism of postharvest quality decline in calcium-deficient apples and the potential interaction between Ca2+ and endogenous H2S.


Asunto(s)
Sulfuro de Hidrógeno/metabolismo , Malus/metabolismo , Proteínas de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transcriptoma , Antocianinas/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Calcio/metabolismo , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Catecol Oxidasa/metabolismo , Flavonoides/metabolismo , Almacenamiento de Alimentos , Frutas/genética , Frutas/metabolismo , Malus/genética , Factores de Terminación de Péptidos/genética , Factores de Terminación de Péptidos/metabolismo , Fenoles/metabolismo , Fenotipo , Proteínas de Plantas/genética , Análisis de Componente Principal
15.
Int J Mol Sci ; 22(23)2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34884883

RESUMEN

Hydrogen sulfide (H2S), a novel gasotransmitter in both mammals and plants, plays important roles in plant development and stress responses. Leaf senescence represents the final stage of leaf development. The role of H2S-producing enzyme L-cysteine desulfhydrase in regulating tomato leaf senescence is still unknown. In the present study, the effect of an L-cysteine desulfhydrase LCD1 on leaf senescence in tomato was explored by physiological analysis. LCD1 mutation caused earlier leaf senescence, whereas LCD1 overexpression significantly delayed leaf senescence compared with the wild type in 10-week tomato seedlings. Moreover, LCD1 overexpression was found to delay dark-induced senescence in detached tomato leaves, and the lcd1 mutant showed accelerated senescence. An increasing trend of H2S production was observed in leaves during storage in darkness, while LCD1 deletion reduced H2S production and LCD1 overexpression produced more H2S compared with the wild-type control. Further investigations showed that LCD1 overexpression delayed dark-triggered chlorophyll degradation and reactive oxygen species (ROS) accumulation in detached tomato leaves, and the increase in the expression of chlorophyll degradation genes NYC1, PAO, PPH, SGR1, and senescence-associated genes (SAGs) during senescence was attenuated by LCD1 overexpression, whereas lcd1 mutants showed enhanced senescence-related parameters. Moreover, a correlation analysis indicated that chlorophyll content was negatively correlated with H2O2 and malondialdehyde (MDA) content, and also negatively correlated with the expression of chlorophyll degradation-related genes and SAGs. Therefore, these findings increase our understanding of the physiological functions of the H2S-generating enzyme LCD1 in regulating leaf senescence in tomato.


Asunto(s)
Cistationina gamma-Liasa/metabolismo , Sulfuro de Hidrógeno/metabolismo , Hojas de la Planta/enzimología , Senescencia de la Planta , Solanum lycopersicum/enzimología , Clorofila/metabolismo , Cistationina gamma-Liasa/genética , Cistationina gamma-Liasa/fisiología , Oscuridad , Regulación de la Expresión Génica de las Plantas , Solanum lycopersicum/fisiología , Hojas de la Planta/fisiología , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiología , Especies Reactivas de Oxígeno/metabolismo
16.
Front Plant Sci ; 12: 696142, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34887880

RESUMEN

Sweet potato decays easily due to its high respiration rate and reactive oxygen species (ROS) accumulation during postharvest storage. In this study, we explored the relationship between antioxidant capacity in leaves and storage properties in different sweet potato cultivars, the tuberous roots of 10 sweet potato cultivars were used as the experimental materials to analyze the storage property during storage at 11-15°C. According to the decay percentage after 290 days of storage, Xu 32 was defined as a storage-tolerant cultivar (rot percentage less than 25%); Xu 55-2, Z 15-1, Shangshu 19, Yushu, and Zhezi 3 as above-moderate storage-tolerant cultivars (rot percentage ranging from 25 to 50%); Sushu 16, Yanshu 5, and Hanzi as medium-storable cultivars (rot percentage 50-75%); and Yan 25 as a storage-sensitive cultivar (rot percentage greater than 75%). Meanwhile, analysis of the α-amylase activity in root tubers of the 10 sweet potato cultivars during storage indicated that α-amylase activity was lowest in the storage-tolerant cultivar Xu 32 and highest in the storage-sensitive cultivar Yan 25. Evaluation of antioxidant enzyme activities and ROS content in the leaves of these 10 cultivars demonstrated that cultivar Xu 32, which showed the best storage property, had higher antioxidant enzyme activity [superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and peroxidase (POD)] but lower lipoxygenase (LOX) activity, hydrogen peroxide (H2O2) and malondialdehyde (MDA) contents, and superoxide anion radical (O2⋅-) production rates compared with those of the storage-sensitive cultivar Yan 25 and the medium-storability cultivars Hanzi, Yanshu 5, and Sushu 16. Additionally, principal component analysis (PCA) suggested that sweet potato cultivars with different storage properties were clustered separately. Correlation and heat map analysis further indicated that CAT, APX, POD, and SOD activities were negatively correlated with α-amylase activity, while LOX activity and MDA and H2O2 contents were negatively correlated with the storage property of sweet potato. Combined, our findings revealed that storage property is highly correlated with antioxidant capacity in sweet potato leaves and negatively correlated with α-amylase activity in tuberous roots, which provides a convenient means for the screening of storage-tolerant sweet potato cultivars.

17.
Plant Physiol Biochem ; 167: 410-419, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34411780

RESUMEN

Purple-fleshed sweetpotato (Ipomoea batatas(L.)Lam.) is rich in anthocyanins. R2R3-type MYB transcription factors(TFs)with EAR motifs inhibiting anthocyanin biosynthesis have been reported, and there is still a lack of information on how mutations in the EAR motifs of MYBs affect anthocyanin accumulation. In this study, we obtained three IbMYB44 TFs by bioinformatics. Among these TFs, IbMYB44.1, IbMYB44.3 with a complete EAR motif and IbMYB44.2 with a single amino acid mutant in the EAR motif caused an amino acid substitution from leucine to valine. RT-qPCR analysis showed that IbMYB44s was expressed at lower levels in the purple-fleshed sweetpotato than in nonpurple-fleshed sweetpotato (P < 0.01). Transient expression assays showed that the inhibitory effect of IbMYB44.1/3 was stronger than IbMYB44.2 in tobacco leaves and red-skinned pears. RT-qPCR analysis further proved that IbMYB44.1/3 significantly inhibited the expression of anthocyanin biosynthesis-related genes compared with IbMYB44.2 in tobacco leaves and red-skinned pears. A dual luciferase reporter assay showed that IbMYB44s cannot directly activate the IbANS promoter, and the result was also verified by yeast one-hybrid (Y1H) experiments. Moreover, we identified the interaction of IbMYB340 with IbMYB44.1, IbMYB44.2 and IbMYB44.3 via yeast two-hybrid (Y2H) assays. Thus, IbMYB44.1/3 could interact with IbMYB340 to negatively regulate anthocyanin biosynthesis. This study enriched the regulatory network of anthocyanins and also provided a theoretical basis for a single amino acid mutant from leucine to valine in the EAR motif of IbMYB44.2 affecting anthocyanin biosynthesis in the purple-fleshed sweetpotato.


Asunto(s)
Ipomoea batatas , Aminoácidos , Antocianinas , Regulación de la Expresión Génica de las Plantas , Ipomoea batatas/genética , Ipomoea batatas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo
18.
Plant Cell Rep ; 40(1): 157-169, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33084965

RESUMEN

KEY MESSAGE: The transcription factor (TF) IbERF71 forms a novel complex, IbERF71-IbMYB340-IbbHLH2, to coregulate anthocyanin biosynthesis by binding to the IbANS1 promoter in purple-fleshed sweet potatoes. Purple-fleshed sweet potato (Ipomoea batatas L.) is very popular because of its abundant anthocyanins, which are natural pigments with multiple physiological functions. TFs involved in regulating anthocyanin biosynthesis have been identified in many plants. However, the molecular mechanism of anthocyanin biosynthesis in purple-fleshed sweet potatoes has rarely been examined. In this study, TF IbERF71 and its partners were screened by bioinformatics and RT-qPCR analysis. The results showed that the expression levels of IbERF71 and partners IbMYB340 and IbbHLH2 were higher in purple-fleshed sweet potatoes than in other colors and that the expression levels positively correlated with anthocyanin contents. Moreover, transient expression assays showed that cotransformation of IbMYB340+IbbHLH2 resulted in anthocyanin accumulation in tobacco leaves and strawberry receptacles, and additional IbERF71 significantly increased visual aspects. Furthermore, the combination of the three TFs significantly increased the expression levels of FvANS and FvGST, which are involved in anthocyanin biosynthesis and transport of strawberry receptacles. The dual-luciferase reporter system verified that cotransformation of the three TFs enhanced the transcription activity of IbANS1. In addition, yeast two-hybrid and firefly luciferase complementation assays revealed that IbMYB340 interacted with IbbHLH2 and IbERF71 but IbERF71 could not interact with IbbHLH2 in vitro. In summary, our findings provide novel evidence that IbERF71 and IbMYB340-IbbHLH2 form the regulatory complex IbERF71-IbMYB340-IbbHLH2 that coregulates anthocyanin accumulation by binding to the IbANS1 promoter in purple-fleshed sweet potatoes. Thus, the present study provides a new regulatory network of anthocyanin biosynthesis and strong insight into the color development of purple-fleshed sweet potatoes.


Asunto(s)
Antocianinas/metabolismo , Ipomoea batatas/genética , Ipomoea batatas/metabolismo , Proteínas de Plantas/metabolismo , Antocianinas/genética , Fragaria/genética , Fragaria/metabolismo , Regulación de la Expresión Génica de las Plantas , Pigmentación , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Mapas de Interacción de Proteínas , Nicotiana/genética , Nicotiana/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
19.
Hortic Res ; 7(1): 211, 2020 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-33328464

RESUMEN

Hydrogen sulfide (H2S) is a gaseous signaling molecule that plays multiple roles in plant development. However, whether endogenous H2S plays a role in fruit ripening in tomato is still unknown. In this study, we show that the H2S-producing enzyme L-cysteine desulfhydrase SlLCD1 localizes to the nucleus. By constructing mutated forms of SlLCD1, we show that the amino acid residue K24 of SlLCD1 is the key amino acid that determines nuclear localization. Silencing of SlLCD1 by TRV-SlLCD1 accelerated fruit ripening and reduced H2S production compared with the control. A SlLCD1 gene-edited mutant obtained through CRISPR/Cas9 modification displayed a slightly dwarfed phenotype and accelerated fruit ripening. This mutant also showed increased cysteine content and produced less H2S, suggesting a role of SlLCD1 in H2S generation. Chlorophyll degradation and carotenoid accumulation were enhanced in the SlLCD1 mutant. Other ripening-related genes that play roles in chlorophyll degradation, carotenoid biosynthesis, cell wall degradation, ethylene biosynthesis, and the ethylene signaling pathway were enhanced at the transcriptional level in the lcd1 mutant. Total RNA was sequenced from unripe tomato fruit treated with exogenous H2S, and transcriptome analysis showed that ripening-related gene expression was suppressed. Based on the results for a SlLCD1 gene-edited mutant and exogenous H2S application, we propose that the nuclear-localized cysteine desulfhydrase SlLCD1 is required for endogenous H2S generation and participates in the regulation of tomato fruit ripening.

20.
Front Plant Sci ; 11: 584, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32477391

RESUMEN

Hydrogen sulfide (H2S) could act as a versatile signaling molecule in delaying fruit ripening and senescence. Ethylene (C2H4) also plays a key role in climacteric fruit ripening, but little attention has been given to its interaction with H2S in modulating fruit ripening and senescence. To study the role of H2S treatment on the fruit quality and nutrient metabolism, tomato fruits at white mature stage were treated with ethylene and ethylene plus H2S. By comparing to C2H4 treatment, we found that additional H2S significantly delayed the color change of tomato fruit, and maintained higher chlorophyll and lower flavonoids during storage. Moreover, H2S could inhibit the activity of protease, maintained higher levels of nutritional-related metabolites, such as anthocyanin, starch, soluble protein, ascorbic acid by comparing to C2H4 treatment. Gene expression analysis showed that additional H2S attenuated the expression of beta-amylase encoding gene BAM3, UDP-glycosyltransferase encoding genes, ethylene-responsive transcription factor ERF003 and DOF22. Furthermore, principal component analysis suggested that starch, titratable acids, and ascorbic acid were important factors for affecting the tomato storage quality, and the correlation analysis further showed that H2S affected pigments metabolism and the transformation of macromolecular to small molecular metabolites. These results showed that additional H2S could maintain the better appearance and nutritional quality than C2H4 treatment alone, and prolong the storage period of post-harvest tomato fruits.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...