Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Foods ; 13(5)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38472754

RESUMEN

The primary challenges in fruit and vegetable preservation include extending storage duration while preserving sensory quality and nutritional value. In this study, sesbania gum (SG) was oxidized to prepare oxidized sesbania gum (OSG). An OSG/ZnO composite film was subsequently prepared, combining OSG, sodium carboxymethyl cellulose (CMC), and nano-zinc oxide (nano-ZnO). The preparation technology was determined via a response surface optimization experiment. When the addition amount of nano-ZnO exceeded 0.3 mg/mL, the composite films exhibited an antibacterial rate of over 90% against E. coli and S. aureus. For wampee (Clausena lansium (Lour.) Skeels) preservation, a OSG/ZnO-0.3 film was directly applied as a coating. The findings demonstrated favorable results in terms of the rate of rotting, soluble solids, and titrable acidity, effectively prolonging wampee fruit storage. This suggests the potential of an OSG composite film with nano-ZnO as a promising fruit packaging material, thereby expanding the application of SG and wampee fruit preservation.

2.
Food Chem X ; 20: 100917, 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-38144742

RESUMEN

This study aimed to examine the interaction mechanism of polyphenol protein in a heat-treated aqueous solution system using epigallocatechin gallate (EGCG) and whey protein (WP) as raw materials. Further, we hypothesized the binding characteristics of these two compounds. The results were as follows: The quenching mechanism between WP and EGCG was characterized as static quenching. As the temperature increased, the binding constant and the binding force between EGCG and WP both increased. The number of binding sites (denoted as n) between WP and EGCG was approximately 1. Hence, WP provided a single site to bind to EGCG to form a complex. The main binding modes between WP and EGCG were hydrophobic and electrostatic interactions, and they were spontaneously combined into complexes (ΔG < 0). This study provided a basis for the interaction between WP and EGCG under different heating conditions and their combination mode.

3.
Int J Mol Sci ; 24(15)2023 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-37569843

RESUMEN

Continuous cropping (CC) is a common practice in agriculture, and usually causes serious economic losses due to soil degeneration, decreased crop yield and quality, and increased disease incidence, especially in medicinal plants. Continuous cropping obstacles (CCOs) are mainly due to changes in soil microbial communities, nutrient availability, and allelopathic effects. Recently, progressive studies have illustrated the molecular mechanisms of CCOs, and valid strategies to overcome them. Transcriptomic and metabolomics analyses revealed that identified DEGs (differently expressed genes) and metabolites involved in the response to CCOs are involved in various biological processes, including photosynthesis, carbon metabolism, secondary metabolite biosynthesis, and bioactive compounds. Soil improvement is an effective strategy to overcome this problem. Soil amendments can improve the microbial community by increasing the abundance of beneficial microorganisms, soil fertility, and nutrient availability. In this review, we sum up the recent status of the research on CCOs in medicinal plants, the combination of transcriptomic and metabolomics studies, and related control strategies, including uses of soil amendments, crop rotation, and intercropping. Finally, we propose future research trends for understanding CCOs, and strategies to overcome these obstacles and promote sustainable agriculture practices in medicinal plants.


Asunto(s)
Plantas Medicinales , Microbiología del Suelo , Agricultura , Suelo , Carbono
4.
Front Plant Sci ; 14: 1201486, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37457333

RESUMEN

Pogostemon cablin is a well-known protected species widely used in medicine and spices, however the underlying molecular mechanisms and metabolite dynamics of P. cablin flower development remain unclear due to the difficulty in achieving flowering in this species. A comparison of the transcriptome and widely targeted metabolome during P. cablin flower development was first performed in this study. Results showed that a total of 13,469 differentially expressed unigenes (DEGs) and 371 differentially accumulated metabolites (DAMs) were identified. Transcriptomic analysis revealed that the DEGs were associated with starch and sucrose metabolism, terpenoid biosynthesis and phenylpropanoid biosynthesis. Among these DEGs, 75 MIKC-MADS unigenes were associated with the development of floral organs. Gibberellins (GAs), auxin, and aging signaling might form a cross-regulatory network to regulate flower development in P. cablin. According to the metabolic profile, the predominant DAMs were amino acids, flavonoids, terpenes, phenols, and their derivatives. The accumulation patterns of these predominant DAMs were closely associated with the flower developmental stage. The integration analysis of DEGs and DAMs indicated that phenylpropanoids, flavonoids, and amino acids might be accumulated due to the activation of starch and sucrose metabolism. Our results provide some important insights for elucidating the reproductive process, floral organ, and color formation of P. cablin flowers at the molecular level. These results will improve our understanding of the molecular and genetic mechanisms involved in the floral development of P. cablin.

5.
Front Plant Sci ; 13: 980745, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36226287

RESUMEN

Pogostemon cablin (patchouli) cultivation is challenged by serious soil sickness, of which autotoxins accumulation is a major cause. p-hydroxybenzoic acid (p-HBA) is one of the main autotoxins of patchouli. However, the molecular mechanism underlying the response of patchouli to p-HBA remains unclear. In this study, RNA-sequencing combined with physiological analysis was used to monitor the dynamic transcriptomic and physiological changes in patchouli seedlings 0, 6, 12, 24, 48, and 96 h after p-HBA treatment. p-HBA stress inhibited root biomass accumulation, induced excessive hydrogen peroxide accumulation and lipid peroxidation, and activated most antioxidant enzymes. Compared with that of the control, the osmotic adjustment substance content was elevated with treatment. Subsequently, 15,532, 8,217, 8,946, 2,489, and 5,843 differentially expressed genes (DEGs) at 6, 12, 24, 48, and 96 h after p-HBA treatment, respectively, were identified in patchouli roots. GO functional enrichment analysis showed that the DEGs were enriched mainly in plasma membrane, defense response, response to chitin, DNA-binding transcription factor activity and abscisic acid-activated signaling pathway. The upregulated genes were involved in glycolysis/gluconeogenesis, cysteine and methionine metabolism, starch and sucrose metabolism, biosynthesis of unsaturated fatty acids, and linoleic acid metabolism. Genes associated with MAPK signaling pathway-plant, plant-pathogen interaction, plant hormone signal transduction were downregulated with p-HBA treatment. These pathways are related to root browning and rotting, leading to plant death.

6.
Int J Mol Sci ; 23(19)2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36233104

RESUMEN

Drought stress is considered the main obstacle restricting Camellia vietnamensis Huang (C. vietnamensis) yield. Hainan is the southernmost distribution region of C. vietnamensis in China and experiences a drought period annually. To study the drought-stress-response mechanism of C. vietnamensis, we treated seedlings of drought-tolerant (HD1) and drought-sensitive (WH1) cultivars with PEG-6000 (PEG) to simulate drought stress and compared the physiology and transcriptome of their leaves at 0 d, 3 d and 6 d posttreatment. Under drought stress, the growth of C. vietnamensis was inhibited, the relative water content (RWC) of leaves decreased and the contents of malondialdehyde (MDA), antioxidant enzyme activities, osmotic regulatory substances and secondary metabolites increased. Compared with those of WH1, the leaf RWC, osmotic-regulation substance content (proline, soluble protein and soluble sugar) and antioxidant enzyme activity (superoxide dismutase, peroxidase and catalase) of HD1 were significantly increased, while the relative electrical conductivity and MDA content were significantly decreased. Compared with WH1, 2812, 2070 and 919, differentially expressed genes (DEGs) were detected in HD1 0 d, 3 d and 6 d posttreatment, respectively, and the number of DEGs increased with increasing treatment time. The detected DEGs are involved in the drought stress response of C. vietnamensis mainly through plant-hormone signal transduction and lignin and flavonoid biosynthesis pathways. Drought stress significantly activated the expression of several lignin and flavonoid biosynthesis genes in HD1. Moreover, total flavonoid and total polyphenol contents in HD1 were significantly increased, suggesting that the accumulation of flavonoids may be a key factor in the drought stress response of C. vietnamensis. Additionally, 191 DEGs were associated with coding transcription factors (TFs). This study provides insight into the molecular mechanism of the drought stress response of C. vietnamensis and provides a theoretical basis for the development and cultivation of new drought-resistant cultivars.


Asunto(s)
Camellia , Sequías , Antioxidantes/metabolismo , Camellia/genética , Camellia/metabolismo , Catalasa , Hormonas , Lignina , Malondialdehído/metabolismo , Polifenoles , Prolina/metabolismo , Estrés Fisiológico/genética , Azúcares , Superóxido Dismutasa/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Agua/metabolismo
7.
Front Plant Sci ; 13: 853110, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35432413

RESUMEN

Pogostemon cablin (patchouli) is a commercially important medicinal and industrial crop grown worldwide for its medicinal and aromatic properties. Patchoulol and pogostone, derived from the essential oil of patchouli, are considered valuable components in the cosmetic and pharmaceutical industries. Due to its high application value in the clinic and industry, the demand for patchouli is constantly growing. Unfortunately, patchouli cultivation has suffered due to severe continuous cropping obstacles, resulting in a significant decline in yield and quality. Moreover, the physiological and transcriptional changes in patchouli in response to continuous cropping obstacles remain unclear. This has greatly restricted the development of the patchouli industry. To explore the mechanism underlying the rapid response of patchouli roots to continuous cropping stress, integrated analysis of the transcriptome and miRNA profiles of patchouli roots under continuous and noncontinuous cropping conditions in different growth periods was conducted using RNA sequencing (RNA-seq) and miRNA-seq and complemented with physiological data. The physiological and biochemical results showed that continuous cropping significantly inhibited root growth, decreased root activity, and increased the activity of antioxidant enzymes (superoxide dismutase, peroxidase, and catalase) and the levels of osmoregulators (malondialdehyde, soluble protein, soluble sugar, and proline). Subsequently, we found 4,238, 3,494, and 7,290 upregulated and 4,176, 3,202, and 8,599 downregulated differentially expressed genes (DEGs) in the three growth periods of continuously cropped patchouli, many of which were associated with primary carbon and nitrogen metabolism, defense responses, secondary metabolite biosynthesis, and transcription factors. Based on miRNA-seq, 927 known miRNAs and 130 novel miRNAs were identified, among which 67 differentially expressed miRNAs (DEMIs) belonging to 24 miRNA families were induced or repressed by continuous cropping. By combining transcriptome and miRNA profiling, we obtained 47 miRNA-target gene pairs, consisting of 18 DEMIs and 43 DEGs, that likely play important roles in the continuous cropping response of patchouli. The information provided in this study will contribute to clarifying the intricate mechanism underlying the patchouli response to continuous cropping obstacles. In addition, the candidate miRNAs and genes can provide a new strategy for breeding continuous cropping-tolerant patchouli.

8.
Molecules ; 27(6)2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35335153

RESUMEN

Liver damage seriously affects human health. Over 35% of cases of acute liver damage are caused by alcohol damage. Thus, finding drugs that can inhibit and effectively treat this disease is necessary. This article mainly focuses on the effect of the metabolome physical activity of active peptides in Camellia vietnamensis active peptide (CMAP) and improving liver protection. DEAE Sepharose FF ion-exchange column chromatography was used in separating and purifying crude peptides from Camellia vietnamensis Two components, A1 and A2, were obtained, and the most active A1 was selected. Sephadex G-100 gel column chromatography was used in A1 separation and purification. Three components, Al-1, Al-2, and Al-3, were obtained. Through antioxidant activity in vitro as an index of inspection, the relatively active component A1-2 was removed. Reverse-phase high-performance liquid chromatography showed that the purity of component A1-2 was 93.45%. The extracted CMAPs acted on alcoholic liver injury cells. Metabolomics studies revealed that the up-regulated metabolites were ribothymidine and xanthine; the down-regulated metabolites were hydroxyphenyllactic acid, creatinine, stearoylcarnitine, and inosine. This study provides an effective theoretical support for subsequent research.


Asunto(s)
Camellia , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Cromatografía por Intercambio Iónico/métodos , Humanos , Péptidos
9.
PeerJ ; 9: e12025, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34527441

RESUMEN

Pogostemon cablin, a medicinally and economically important perennial herb, is cultivated around the world due to its medicinal and aromatic properties. Different P. cablin cultivars exhibit different morphological traits and patchouli oil components and contents (especially patchouli alcohol (PA) and pogostone (PO)). According to the signature constituent of the leaf, P. cablin was classified into two different chemotypes, including PA-type and PO-type. To better understand the molecular mechanisms of PA biosynthesis, the transcriptomes of Chinese-cultivated P. cablin cv. PA-type "Nanxiang" (NX) and PO-type "Paixiang" (PX) were analyzed and compared with ribonucleic acid sequencing (RNA-Seq) technology. We obtained a total of 36.83 G clean bases from the two chemotypes, compared them with seven databases and revealed 45,394 annotated unigenes. Thirty-six candidate unigenes participating in the biosynthesis of PA were found in the P. cablin transcriptomes. Overall, 8,390 differentially expressed unigenes were identified between the chemotypes, including 2,467 upregulated and 5,923 downregulated unigenes. Furthermore, six and nine differentially expressed genes (DEGs) were mapped to the terpenoid backbone biosynthetic and sesquiterpenoid and triterpenoid biosynthetic pathways, respectively. One key sesquiterpene synthase gene involved in the sesquiterpenoid and triterpenoid biosynthetic pathways, encoding patchoulol synthase variant 1, was significantly upregulated in NX. Additionally, GC-MS analysis of the two chemotypes in this study showed that the content of PA in NX was significantly higher than that of PX, while the content of PO showed the opposite phenotype. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis showed that the DEG expression tendency was consistent with the transcriptome sequencing results. Overall, 23 AP2/ERF, 13 bHLH, 11 MYB, 11 NAC, three Trihelix, 10 WRKY and three bZIP genes that were differentially expressed may act as regulators of terpenoid biosynthesis. Altogether, 8,314 SSRs were recognized within 6,825 unigenes, with a distribution frequency of 18.32%, among which 1,202 unigenes contained more than one SSR. The transcriptomic characteristics of the two P. cablin chemotypes are comprehensively reported in this study, and these results will contribute to a better understanding of the molecular mechanism of PA biosynthesis. Our transcriptome data also provide a valuable genetic resource for further studies on P. cablin.

10.
Hortic Res ; 8(1): 157, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34193845

RESUMEN

Camellia oleifera (C. oleifera) is one of the four major woody oil-bearing crops in the world and has relatively high ecological, economic, and medicinal value. Its seeds undergo a series of complex physiological and biochemical changes during ripening, which is mainly manifested as the accumulation and transformation of certain metabolites closely related to oil quality, especially flavonoids and fatty acids. To obtain new insights into the underlying molecular mechanisms, a parallel analysis of the transcriptome and proteome profiles of C. oleifera seeds at different maturity levels was conducted using RNA sequencing (RNA-seq) and isobaric tags for relative and absolute quantification (iTRAQ) complemented with gas chromatography-mass spectrometry (GC-MS) data. A total of 16,530 transcripts and 1228 proteins were recognized with significant differential abundances in pairwise comparisons of samples at various developmental stages. Among these, 317 were coexpressed with a poor correlation, and most were involved in metabolic processes, including fatty acid metabolism, α-linolenic acid metabolism, and glutathione metabolism. In addition, the content of total flavonoids decreased gradually with seed maturity, and the levels of fatty acids generally peaked at the fat accumulation stage; these results basically agreed with the regulation patterns of genes or proteins in the corresponding pathways. The expression levels of proteins annotated as upstream candidates of phenylalanine ammonia-lyase (PAL) and chalcone synthase (CHS) as well as their cognate transcripts were positively correlated with the variation in the flavonoid content, while shikimate O-hydroxycinnamoyltransferase (HCT)-encoding genes had the opposite pattern. The increase in the abundance of proteins and mRNAs corresponding to alcohol dehydrogenase (ADH) was associated with a reduction in linoleic acid synthesis. Using weighted gene coexpression network analysis (WGCNA), we further identified six unique modules related to flavonoid, oil, and fatty acid anabolism that contained hub genes or proteins similar to transcription factors (TFs), such as MADS intervening keratin-like and C-terminal (MIKC_MADS), type-B authentic response regulator (ARR-B), and basic helix-loop-helix (bHLH). Finally, based on the known metabolic pathways and WGCNA combined with the correlation analysis, five coexpressed transcripts and proteins composed of cinnamyl-alcohol dehydrogenases (CADs), caffeic acid 3-O-methyltransferase (COMT), flavonol synthase (FLS), and 4-coumarate: CoA ligase (4CL) were screened out. With this exploratory multiomics dataset, our results presented a dynamic picture regarding the maturation process of C. oleifera seeds on Hainan Island, not only revealing the temporal specific expression of key candidate genes and proteins but also providing a scientific basis for the genetic improvement of this tree species.

11.
PLoS One ; 15(2): e0226888, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32027663

RESUMEN

Camellia oleifera Abel. (C. oleifera), as an important woody tree species producing edible oils in China, has attracted enormous attention due to its abundant unsaturated fatty acids and their associated benefits to human health. To reveal novel insights into the characters during the maturation period of this plant as well as the molecular basis of fatty acid biosynthesis and degradation, we conducted a conjoint analysis of the transcriptome and proteome of C. oleifera seeds from Hainan Island. Using RNA sequencing (RNA-seq) technology and shotgun proteomic method, 59,391 transcripts and 40,500 unigenes were obtained by TIGR Gene Indices Clustering Tools (TGICL), while 1691 protein species were identified from Mass Spectrometry (MS). Subsequently, all genes and proteins were employed in euKaryotic Orthologous Groups (KOG) classification, Gene Ontology (GO) annotation, and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis to investigate their essential functions. The results indicated that the most abundant pathways were biological metabolic processes. There were 946 unigenes associated with lipid metabolism at the transcriptome level, with 116 proteins at the proteome level; among these, 38 specific proteins were involved in protein-protein interactions, with the majority being related to fatty acid catabolic process. The expression levels of 21 candidate unigenes encoding target proteins were further detected by quantitative real-time polymerase chain reaction (qRT-PCR). Finally, Gas Chromatography Mass Spectrometry (GC-MS) was carried out to determine the fatty acid composition of C. oleifera oil. These findings not only deepened our understanding about the molecular mechanisms of fatty acid metabolism but also offered new evidence concerning the roles of relevant proteins in oil-bearing crops. Furthermore, the lipid-associated proteins recognized in this research might be helpful in providing a reference for the synthetic regulation of C. oleifera oil quality by genetic engineering techniques, thus resulting in potential application in agriculture.


Asunto(s)
Camellia/genética , Ácidos Grasos/genética , Metabolismo de los Lípidos/genética , Proteoma/metabolismo , Semillas/genética , Transcriptoma/genética , China , Perfilación de la Expresión Génica/métodos , Islas , Aceites de Plantas/química , Análisis de Secuencia de ARN/métodos
12.
Molecules ; 21(11)2016 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-27869751

RESUMEN

Power ultrasound (US) could potentially be used in the food industry in the future. However, the extent of anthocyanin degradation by US requires investigation. Cyanidin-3-glucoside (Cy-3-glu) obtained from blueberry extracts was used as research material to investigate the effect of power ultrasound on food processing of anthocyanin-rich raw materials. The effects of ultrasonic waves on the stability of Cy-3-glu and on the corresponding changes in UV-Vis spectrum and antioxidant activity were investigated, and the mechanisms of anthocyanin degradation induced by ultrasonic waves were discussed. To explore Cy-3-glu degradation in different environments, we kept the Cy-3-glu solution treated with ultrasonic waves in four concentrations (0%, 10%, 20%, and 50%) of ethanol aqueous solutions to simulate water, beer, wine, and liquor storage environment according to the chemical kinetics method. Results show that the basic spectral characteristics of Cy-3-glu did not significantly change after power ultrasound cell crusher application at 30 °C. However, with anthocyanin degradation, the intensity of the peak for Cy-3-glu at 504 nm significantly decreased (p < 0.05). The degradation kinetics of Cy-3-glu by ultrasonic waves (200-500 W frequency) fitted well to first-order reaction kinetics, and the degradation rate constant of Cy-3-glu under power ultrasound was considerably larger than that under thermal degradation (p < 0.05). The sensitivity of the anthocyanins of blueberry to temperature increased with increasing ethanol concentration, and the longest half-life was observed in 20% ethanol aqueous solution.


Asunto(s)
Antocianinas/química , Antioxidantes/química , Arándanos Azules (Planta)/química , Glucósidos/química , Antocianinas/aislamiento & purificación , Antioxidantes/aislamiento & purificación , Glucósidos/aislamiento & purificación , Semivida , Cinética , Extractos Vegetales/química , Temperatura , Ondas Ultrasónicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...