Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Database (Oxford) ; 20232023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37311149

RESUMEN

Neoantigens derived from somatic deoxyribonucleic acid alterations are ideal cancer-specific targets. However, integrated platform for neoantigen discovery is urgently needed. Recently, many scattered experimental evidences suggest that some neoantigens are immunogenic, and comprehensive collection of these experimentally validated neoantigens is still lacking. Here, we have integrated the commonly used tools in the current neoantigen discovery process to form a comprehensive web-based analysis platform. To identify experimental evidences supporting the immunogenicity of neoantigens, we performed comprehensive literature search and constructed the database. The collection of public neoantigens was obtained by using comprehensive features to filter the potential neoantigens from recurrent driver mutations. Importantly, we constructed a graph neural network (GNN) model (Immuno-GNN) using an attention mechanism to consider the spatial interactions between human leukocyte antigen and antigenic peptides for neoantigen immunogenicity prediction. The new easy-to-use R/Shiny web-based neoantigen database and discovery platform, Neodb, contains currently the largest number of experimentally validated neoantigens. In addition to validated neoantigen, Neodb also includes three additional modules for facilitating neoantigen prediction and analysis, including 'Tools' module (comprehensive neoantigen prediction tools); 'Driver-Neo' module (collection of public neoantigens derived from recurrent mutations) and 'Immuno-GNN' module (a novel immunogenicity prediction tool based on a GNN). Immuno-GNN shows improved performance compared with known methods and also represents the first application of GNN model in neoantigen immunogenicity prediction. The construction of Neodb will facilitate the study of neoantigen immunogenicity and the clinical application of neoantigen-based cancer immunotherapy. Database URL https://liuxslab.com/Neodb/.


Asunto(s)
Inmunoterapia , Neoplasias , Humanos , Bases de Datos Factuales , Mutación , Redes Neurales de la Computación , Neoplasias/genética , Neoplasias/terapia
2.
Commun Biol ; 6(1): 527, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37193789

RESUMEN

Homologous recombination deficiency (HRD) renders cancer cells vulnerable to unrepaired double-strand breaks and is an important therapeutic target as exemplified by the clinical efficacy of poly ADP-ribose polymerase (PARP) inhibitors as well as the platinum chemotherapy drugs applied to HRD patients. However, it remains a challenge to predict HRD status precisely and economically. Copy number alteration (CNA), as a pervasive trait of human cancers, can be extracted from a variety of data sources, including whole genome sequencing (WGS), SNP array, and panel sequencing, and thus can be easily applied clinically. Here we systematically evaluate the predictive performance of various CNA features and signatures in HRD prediction and build a gradient boosting machine model (HRDCNA) for pan-cancer HRD prediction based on these CNA features. CNA features BP10MB[1] (The number of breakpoints per 10MB of DNA is 1) and SS[ > 7 & <=8] (The log10-based size of segments is greater than 7 and less than or equal to 8) are identified as the most important features in HRD prediction. HRDCNA suggests the biallelic inactivation of BRCA1, BRCA2, PALB2, RAD51C, RAD51D, and BARD1 as the major genetic basis for human HRD, and may also be applied to effectively validate the pathogenicity of BRCA1/2 variants of uncertain significance (VUS). Together, this study provides a robust tool for cost-effective HRD prediction and also demonstrates the applicability of CNA features and signatures in cancer precision medicine.


Asunto(s)
Proteína BRCA1 , Neoplasias , Humanos , Proteína BRCA1/genética , Proteína BRCA2/genética , Recombinación Homóloga , Variaciones en el Número de Copia de ADN , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Biología
3.
Int J Mol Sci ; 23(19)2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36232923

RESUMEN

Neoantigens derived from somatic DNA alterations are ideal cancer-specific targets. In recent years, the combination therapy of PD-1/PD-L1 blockers and neoantigen vaccines has shown clinical efficacy in original PD-1/PD-L1 blocker non-responders. However, not all somatic DNA mutations result in immunogenicity among cancer cells and efficient tools to predict the immunogenicity of neoepitopes are still urgently needed. Here, we present the Seq2Neo pipeline, which provides a one-stop solution for neoepitope feature prediction using raw sequencing data. Neoantigens derived from different types of genome DNA alterations, including point mutations, insertion deletions and gene fusions, are all supported. Importantly, a convolutional neural network (CNN)-based model was trained to predict the immunogenicity of neoepitopes and this model showed an improved performance compared to the currently available tools in immunogenicity prediction using independent datasets. We anticipate that the Seq2Neo pipeline could become a useful tool in the prediction of neoantigen immunogenicity and cancer immunotherapy. Seq2Neo is open-source software under an academic free license (AFL) v3.0 and is freely available at Github.


Asunto(s)
Vacunas contra el Cáncer , Neoplasias , Antígenos de Neoplasias/genética , Antígeno B7-H1 , Humanos , Inmunoterapia , Neoplasias/genética , Neoplasias/terapia , Receptor de Muerte Celular Programada 1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...