Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
2.
Cell Death Dis ; 13(5): 468, 2022 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-35585057

RESUMEN

Retinal pigment epithelium (RPE) degeneration plays an important role in a group of retinal disorders such as retinal degeneration (RD) and age-related macular degeneration (AMD). The mechanism of RPE cell death is not yet fully elucidated. Ferroptosis, a novel regulated cell death pathway, participates in cancer and several neurodegenerative diseases. Glutathione peroxidase 4 (GPx-4) and ferroptosis suppressor protein 1 (FSP1) have been proposed to be two main regulators of ferroptosis in these diseases; yet, their roles in RPE degeneration remain elusive. Here, we report that both FSP1-CoQ10-NADH and GSH-GPx-4 pathways inhibit retinal ferroptosis in sodium iodate (SIO)-induced retinal degeneration pathologies in human primary RPE cells (HRPEpiC), ARPE-19 cell line, and mice. GSH-GPx-4 signaling was compromised after a toxic injury caused by SIO, which was aggravated by silencing GPx-4, and ferroptosis inhibitors robustly protected RPE cells from the challenge. Interestingly, while inhibition of FSP1 caused RPE cell death, which was aggravated by SIO exposure, overexpression of FSP1 effectively protected RPE cells from SIO-induced injury, accompanied by a significant down-regulation of CoQ10/NADH and lipid peroxidation. Most importantly, in vivo results showed that Ferrostatin-1 not only remarkably alleviated SIO-induced RPE cell loss, photoreceptor death, and retinal dysfunction but also significantly ameliorated the compromised GSH-GPx-4 and FSP1-CoQ10-NADH signaling in RPE cells isolated from SIO-induced RPE degeneration. These data describe a distinct role for ferroptosis in controlling RPE cell death in vitro and in vivo and may provide a new avenue for identifying treatment targets for RPE degeneration.


Asunto(s)
Ferroptosis , Degeneración Retiniana , Epitelio Pigmentado de la Retina , Animales , Glutatión/metabolismo , Ratones , NAD/metabolismo , Estrés Oxidativo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Degeneración Retiniana/metabolismo , Degeneración Retiniana/patología , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/patología , Proteína de Unión al Calcio S100A4/metabolismo , Transducción de Señal , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo
3.
Mol Cell Endocrinol ; 518: 111026, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32919022

RESUMEN

Secreted PDZD2 (sPDZD2) is a signaling molecule generated upon proteolytic processing of the multi-PDZ-containing protein PDZD2. Previous analysis of gene-trap mice deficient in the synthesis of full-length PDZD2, but not the secreted form, revealed a role of PDZD2 in the regulation of glucose-stimulated insulin secretion. Here, using the pancreatic INS-1E ß cells as in vitro model, we showed that depletion of PDZD2/sPDZD2 by RNA interference suppressed the expression of ß-cell genes Ins1, Glut2 and MafA whereas treatment with recombinant sPDZD2 rescued the suppressive effect. Similar to GLP-1, sPDZD2 stimulated intracellular cAMP levels, activated ß-cell gene expression in a PKA-dependent manner and induced the phosphorylation and nuclear localization of PDX1. Depletion of PDX1 inhibited the sPDZD2 insulinotropic effect, which could also be demonstrated in mouse islets. In summary, our findings are consistent with sPDZD2 serving a signaling function in regulating ß-cell gene expression.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/farmacología , Moléculas de Adhesión Celular/farmacología , Secreción de Insulina/efectos de los fármacos , Células Secretoras de Insulina/efectos de los fármacos , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Células Cultivadas , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Transportador de Glucosa de Tipo 2/genética , Transportador de Glucosa de Tipo 2/metabolismo , Insulina/genética , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Ratones , Interferencia de ARN , ARN Interferente Pequeño/farmacología , Ratas , Vías Secretoras/efectos de los fármacos , Vías Secretoras/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
4.
Front Oncol ; 9: 154, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30941306

RESUMEN

One hallmark of cancer cells is sustaining proliferative signaling that leads to uncontrolled cell proliferation. Both the Forkhead box (FOX) M1 transcription factor and the Epidermal Growth Factor (EGF) receptor Pathway Substrate 8 (EPS8) are known to be activated by mitogenic signaling and their levels upregulated in cancer. Well-known to regulate Rac-mediated actin remodeling at the cell cortex, EPS8 carries a nuclear localization signal but its possible nuclear role remains unclear. Here, we demonstrated interaction of FOXM1 with EPS8 in yeast two-hybrid and immunoprecipitation assays. Immunostaining revealed co-localization of the two proteins during G2/M phase of the cell cycle. EPS8 became nuclear localized when CRM1/Exportin 1-dependent nuclear export was inhibited by Leptomycin B, and a functional nuclear export signal could be identified within EPS8 using EGFP-tagging and site-directed mutagenesis. Downregulation of EPS8 using shRNAs suppressed expression of FOXM1 and the FOXM1-target CCNB1, and slowed down G2/M transition in cervical cancer cells. Chromatin immunoprecipitation analysis indicated recruitment of EPS8 to the CCNB1 and CDC25B promoters. Taken together, our findings support a novel partnering role of EPS8 with FOXM1 in the regulation of cancer cell proliferation and provides interesting insight into future design of therapeutic strategy to inhibit cancer cell proliferation.

5.
Biomaterials ; 201: 53-67, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30797114

RESUMEN

Effective retinal drug delivery remains a challenge for treating vision-threatening diseases. Encapsulated-cell therapy (ECT) can provide local drug delivery without repeated invasive injections but is plagued by unsteady performance and biosafety issues. Here, an injectable composite alginate-collagen (CAC) ECT gel with a Tet-on inducible pro-caspase 8 mechanism that acted as an orally-inducible biosafety switch was developed for safer drug delivery. The optimised gels (2 mg/ml collagen, 1.5% high molecular weight alginate and 50,000 cells/gel) could be effectively terminated in vitro (≥20 pg/ml Doxycycline) and in vivo (1 mg/ml oral Doxycycline after 48 h). Also, they displayed effective proliferation control and continuous delivery of bioactive glial-cell derived neurotrophic factor (GDNF) with no significant gel degradation in vitro and in rat vitreous. Most importantly, intravitreally injected gels demonstrated therapeutic efficacy in Royal College of Surgeons rats with degenerating retina in reducing photoreceptor apoptosis and retina function loss. Furthermore, double gel injections into the same eye yielded better outcomes without compromising gel viability. Retrieved gels showed no host-tissue attachment or cell-protrusion 6 months post-implantation. The CAC ECT system exhibited mechanical stability, good encapsulation power, cell viability support, multiplexed GDNF dosage, and compatibility with different cell types (HEK293 and ARPE-19) without immunosuppressant, making it an attractive, safe and well-controlled platform for treating various eye diseases.


Asunto(s)
Alginatos/química , Colágeno/química , Sistemas de Liberación de Medicamentos/métodos , Animales , Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Caspasa 7/metabolismo , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Doxiciclina/administración & dosificación , Doxiciclina/farmacología , Doxiciclina/uso terapéutico , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Células HEK293 , Humanos , Masculino , Microscopía Electrónica de Rastreo , Ratas , Degeneración Retiniana/metabolismo , Retinitis Pigmentosa/tratamiento farmacológico , Retinitis Pigmentosa/metabolismo
6.
Int J Mol Sci ; 18(6)2017 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-28561752

RESUMEN

A major current challenge in the treatment of advanced prostate cancer, which can be initially controlled by medical or surgical castration, is the development of effective, safe, and affordable therapies against progression of the disease to the stage of castration resistance. Here, we showed that in LNCaP and 22Rv1 prostate cancer cells transiently overexpressing androgen receptor splice variant-7 (AR-V7), nuclear factor-kappa B (NF-κB) was activated and could result in up-regulated interleukin (IL)-6 gene expression, indicating a positive interaction between AR-V7 expression and activated NF-κB/IL-6 signaling in castration-resistant prostate cancer (CRPC) pathogenesis. Importantly, both AR-V7-induced NF-κB activation and IL-6 gene transcription in LNCaP and 22Rv1 cells could be inhibited by melatonin. Furthermore, stimulation of AR-V7 mRNA expression in LNCaP cells by betulinic acid, a pharmacological NF-κB activator, was reduced by melatonin treatment. Our data support the presence of bi-directional positive interactions between AR-V7 expression and NF-κB activation in CRPC pathogenesis. Of note, melatonin, by inhibiting NF-κB activation via the previously-reported MT1 receptor-mediated antiproliferative pathway, can disrupt these bi-directional positive interactions between AR-V7 and NF-κB and thereby delay the development of castration resistance in advanced prostate cancer. Apparently, this therapeutic potential of melatonin in advanced prostate cancer/CRPC management is worth translation in the clinic via combined androgen depletion and melatonin repletion.


Asunto(s)
Regulación Neoplásica de la Expresión Génica/genética , Melatonina/farmacología , FN-kappa B/metabolismo , Receptores Androgénicos/genética , Empalme Alternativo , Antineoplásicos Fitogénicos/farmacología , Antioxidantes/farmacología , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , FN-kappa B/antagonistas & inhibidores , Triterpenos Pentacíclicos , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/patología , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores Androgénicos/metabolismo , Triterpenos/farmacología , Triptaminas/farmacología , Ácido Betulínico
7.
Oncotarget ; 5(17): 7549-62, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-25277189

RESUMEN

Transforming growth factor (TGF)-ß-activating kinase 1 (TAK1) is a serine/threonine kinase which is frequently associated with human cancer progression. However, its functional role in tumorigenesis is still controversial. Here, we report that TAK1 enhances the oncogenic capacity of ovarian cancer cells through the activation of NF-κB signaling. We found that TAK1 is frequently upregulated and significantly associated with high-grade and metastatic ovarian cancers. Mechanistic studies showed that Ser412 phosphorylation is required for TAK1 in activating NF-κB signaling and promotes aggressiveness of ovarian cancer cells. Conversely, suppression of TAK1 activity by point mutation at Ser412, RNAi mediated gene knockdown or TAK1 specific inhibitor ((5Z) -7-Oxozeaenol) remarkably impairs tumor growth and metastasis in ovarian cancer in vitro and in vivo. Our study underscores the importance of targeting TAK1 as a promising therapeutic approach to counteract the ovarian cancer progression.


Asunto(s)
Quinasas Quinasa Quinasa PAM/metabolismo , FN-kappa B/metabolismo , Neoplasias Ováricas/patología , Transducción de Señal/fisiología , Animales , Western Blotting , Línea Celular Tumoral , Femenino , Humanos , Inmunohistoquímica , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Invasividad Neoplásica/patología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transfección , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Mol Cancer ; 13: 49, 2014 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-24602453

RESUMEN

AMP-activated protein kinase (AMPK) is a key energy sensor that is involved in regulating cell metabolism. Our previous study revealed that the subunits of the heterotimeric AMPK enzyme are diversely expressed during ovarian cancer progression. However, the impact of the variable expression of these AMPK subunits in ovarian cancer oncogenesis remains obscure. Here, we provide evidence to show that reduced expression of the AMPK-ß1 subunit during tumor progression is associated with the increased oncogenic capacity of advanced ovarian cancer cells. Immunohistochemical analysis revealed that AMPK-ß1 levels were reduced in advanced-stage (P = 0.008), high-grade (P = 0.013) and metastatic ovarian cancers (P = 0.008). Intriguingly, down-regulation of AMPK-ß1 was progressively reduced from tumor stages 1 to 3 of ovarian cancer. Functionally, enforced expression of AMPK-ß1 inhibited ovarian-cancer-cell proliferation, anchorage-independent cell growth, cell migration and invasion. Conversely, depletion of AMPK-ß1 by siRNA enhanced the oncogenic capacities of ovarian cancer cells, suggesting that the loss of AMPK-ß1 favors the aggressiveness of ovarian cancer. Mechanistically, enforced expression of AMPK-ß1 increased AMPK activity, which, in turn, induced cell-cycle arrest via inhibition of AKT/ERK signaling activity as well as impaired cell migration/invasion through the suppression of JNK signaling in ovarian cancer cells. Taken together, these findings suggest that the reduced expression of AMPK-ß1 confers lower AMPK activity, which enhances the oncogenic capacity of advanced-stage ovarian cancer.


Asunto(s)
Proteínas Quinasas Activadas por AMP/biosíntesis , Neoplasias Ováricas/enzimología , Neoplasias Ováricas/patología , Western Blotting , Línea Celular Tumoral , Progresión de la Enfermedad , Activación Enzimática , Femenino , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Humanos , Inmunohistoquímica , Microscopía Confocal , Análisis de Matrices Tisulares , Transfección
9.
BMC Cancer ; 13: 327, 2013 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-23819460

RESUMEN

BACKGROUND: Although advanced-stage cervical cancer can benefit from current treatments, approximately 30% patients may fail after definitive treatment eventually. Therefore, exploring alternative molecular therapeutic approaches is imperatively needed for this disease. We have recently shown that activation of AMP-activated protein kinase (AMPK), a metabolic sensor, hampers cervical cancer cell growth through blocking the Wnt/ß-catenin signaling activity. Here, we report that activated AMPK (p-AMPK) also inhibits cervical cancer cell growth by counteracting FOXM1 function. METHODS: Effect of the activation of AMPK on FOXM1 expression was examined by hypoxia and glucose deprivation, as well as pharmacological AMPK activators such as A23187, AICAR and metformin. RT Q-PCR and Western blot analysis were employed to investigate the activities of AMPK, FOXM1 and AKT/FOXO3a signaling. RESULTS: Consistent with our previous findings, the activation of AMPK by either AMPK activators such as AICAR, A23187, metformin, glucose deprivation or hypoxia significantly inhibited the cervical cancer cell growth. Importantly, we found that activated AMPK activity was concomitantly associated with the reduction of both the mRNA and protein levels of FOXM1. Mechanistically, we showed that activated AMPK was able to reduce AKT mediated phosphorylation of p-FOXO3a (Ser253). Interestingly, activated AMPK could not cause any significant changes in FOXM1 in cervical cancer cells in which endogenous FOXO3a levels were knocked down using siRNAs, suggesting that FOXO3a is involved in the suppression of FOXM1. CONCLUSION: Taken together, our results suggest the activated AMPK impedes cervical cancer cell growth through reducing the expression of FOXM1.


Asunto(s)
Proteínas Quinasas/metabolismo , Transducción de Señal/fisiología , Neoplasias del Cuello Uterino/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Western Blotting , Línea Celular Tumoral , Femenino , Proteína Forkhead Box M1 , Proteína Forkhead Box O3 , Factores de Transcripción Forkhead/metabolismo , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transfección , Neoplasias del Cuello Uterino/patología
10.
Front Oncol ; 3: 11, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23386997

RESUMEN

The forkhead box (FOX) M1 transcription factor is required to maintain the proliferation of cancer cells. Two transcriptionally active isoforms of FOXM1, FOXM1b and FOXM1c, have been identified, but their functional differences remain unclear. FOXM1c is distinguished from FOXM1b by an extra exon (exon Va) that contains an ERK1/2 target sequence. Based on a literature search and quantitative PCR analysis, we concluded that FOXM1b is the predominant isoform that is overexpressed in cancers. The further characterization of FOXM1b and FOXM1c revealed two interesting differences. First, FOXM1b exhibited a higher transforming ability than FOXM1c in a soft agar assay. Second, the transactivating activity of FOXM1c, but not that of FOXM1b, was sensitive to activation by RAF/MEK/MAPK signaling. Importantly, the MEK1 activation of FOXM1c was associated with proteolytic processing to generate short forms that might represent constitutively active forms missing the N-terminal inhibitory domain; in contrast, the proteolytic processing of FOXM1b did not require MEK1 activation. Our findings suggest that FOXM1b is functionally more active. These results provide novel insights into the regulation of FOXM1 activity and its role in tumorigenesis.

11.
J Pineal Res ; 54(1): 69-79, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22856547

RESUMEN

Our laboratory has recently demonstrated a melatonin MT1 receptor-mediated antiproliferative signaling mechanism in androgen receptor (AR)-positive prostate epithelial cells which involves up-regulation of p27(Kip1) through dual activation of Gα(s)/protein kinase A (PKA) and Gα(q)/protein kinase C (PKC) in parallel, and down-regulation of activated AR signaling via PKC stimulation. The aim of the present investigation was to identify the transcription factor that mediates melatonin's up-regulatory effect on p27(Kip1) in LNCaP and 22Rv1 prostate cancer cells. Deletion mapping and reporter assays of the p27(Kip1) promoter revealed that the putative melatonin-responsive transcription factor binds to a 116 base-pair region of the promoter sequence, which contains a potential nuclear factor kappa B (NF-κB) binding site. When the NF-κB binding site was abolished by site-directed mutagenesis, the stimulatory effect of melatonin on p27(Kip1) promoter activity was mitigated. Notably, melatonin inhibited the DNA binding of activated NF-κB via MT1 receptor-induced PKA and PKC stimulation. Furthermore, melatonin's up-regulatory effect on p27(Kip1) transcription and consequent cell antiproliferation were abrogated by NF-κB activator but mimicked by NF-κB inhibitor. The results indicate that inhibition of constitutively active NF-κB via melatonin MT1 receptor-induced dual activation of (Gα(s)) PKA and (Gα(q)) PKC can de-repress the p27(Kip1) promoter leading to transcriptional up-regulation of p27(Kip1). MT1 receptor-mediated inhibition of activated NF-κB signaling provides a novel mechanism supporting the use of melatonin in prostate cancer chemoprevention and therapy.


Asunto(s)
Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Melatonina/farmacología , FN-kappa B/antagonistas & inhibidores , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/prevención & control , Receptor de Melatonina MT1/genética , Línea Celular Tumoral , Regulación hacia Abajo , Humanos , Masculino , Regulación hacia Arriba/efectos de los fármacos
12.
Int J Gynecol Cancer ; 22(1): 15-22, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22080879

RESUMEN

BACKGROUND: The phosphoinositide 3 kinase (PI3K)/v-akt murine thymoma viral oncogene homolog (AKT)/mammalian target of rapamycin (mTOR) pathway is frequently aberrantly activated in ovarian cancer and confers the chemoresistant phenotype of ovarian cancer cells. LY294002 (PI3K inhibitor) and metformin (5'-adenosine monophosphate [AMP]-activated protein kinase [AMPK] activator) are 2 drugs that were known to inhibit mTOR expression through the AKT-dependent and AKT-independent pathways, respectively. In this study, we explored the effectiveness of LY294002 and metformin in combination on inhibition of ovarian cancer cell growth. METHODS: Western blotting was used to detect the changes of PI3K/AKT/mTOR and AMPK/acetyl-CoA carboxylase (ACC) signaling activities, cell cycle control, and apoptosis. Cell growth was evaluated by cell proliferation, colony formation, and soft agar assays. Flow cytometry was used to study cell cycle distribution and cell death upon drug treatment. RESULTS: Our study showed that LY294002 and metformin in combination could simultaneously enhance the repression of the PI3K/AKT/mTOR pathway and the activation of the AMPK/ACC pathway. The downstream target of AKT and AMPK, mTOR, was cooperatively repressed when the drugs were used together. The cell cycle regulatory factors, p53, p27, and p21, were up-regulated. On the other hand, caspase 3 and poly (ADP-ribose) polymerase activities involved in apoptosis were also activated. Cell growth assays indicated that LY294002 and metformin could effectively inhibit ovarian cancer cell growth. Flow cytometry analysis showed that the treatment of the 2 drugs mentioned above induced cell cycle arrest at G1 phase and increased sub-G1 apoptotic cells. CONCLUSION: The combinational use of LY294002 and metformin can enhance inhibition of the growth and induction of the apoptosis of ovarian cancer cells. Our results may provide significant insight into the future therapeutic regimens in ovarian cancer.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Cromonas/farmacología , Inhibidores Enzimáticos/farmacología , Metformina/farmacología , Morfolinas/farmacología , Neoplasias Ováricas/tratamiento farmacológico , Proteínas Quinasas Activadas por AMP/metabolismo , Acetil-CoA Carboxilasa/metabolismo , Antineoplásicos/uso terapéutico , Biomarcadores de Tumor/metabolismo , Western Blotting , Caspasa 3/metabolismo , Línea Celular Tumoral , Cromonas/uso terapéutico , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Sinergismo Farmacológico , Inhibidores Enzimáticos/uso terapéutico , Femenino , Citometría de Flujo , Humanos , Metformina/uso terapéutico , Morfolinas/uso terapéutico , Neoplasias Ováricas/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
13.
Bioinformatics ; 27(21): 2972-8, 2011 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-21896508

RESUMEN

MOTIVATION: The interaction between transcription factor (TF) and transcription factor binding site (TFBS) is essential for gene regulation. Mutation in either the TF or the TFBS may weaken their interaction and thus result in abnormalities. To maintain such vital interaction, a mutation in one of the interacting partners might be compensated by a corresponding mutation in its binding partner during the course of evolution. Confirming this co-evolutionary relationship will guide us in designing protein sequences to target a specific DNA sequence or in predicting TFBS for poorly studied proteins, or even correcting and rescuing disease mutations in clinical applications. RESULTS: Based on six, publicly available, experimentally validated TF-TFBS binding datasets for the basic Helix-Loop-Helix (bHLH) family, Homeo family, High-Mobility Group (HMG) family and Transient Receptor Potential channels (TRP) family, we showed that the evolutions of the TFs and their TFBSs are significantly correlated across eukaryotes. We further developed a mutual information-based method to identify co-evolved protein residues and DNA bases. This research sheds light on the dynamic relationship between TF and TFBS during their evolution. The same principle and strategy can be applied to co-evolutionary studies on protein-DNA interactions in other protein families. AVAILABILITY: All the datasets, scripts and other related files have been made freely available at: http://jjwanglab.org/co-evo. CONTACT: junwen@uw.edu. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Evolución Molecular , Elementos Reguladores de la Transcripción , Factores de Transcripción/metabolismo , Secuencia de Bases , Sitios de Unión , ADN/química , ADN/metabolismo , Humanos , Factores de Transcripción/química , Factores de Transcripción/genética
14.
J Pathol ; 225(4): 525-34, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21661123

RESUMEN

Aberrant activation of Hedgehog (Hh) signalling has been implicated in the pathogenesis of human cancers. However, the cognate molecular mechanisms contributing to this disregulated pathway are incompletely understood. In this study, we showed that Zic2 was frequently over-expressed and associated with high-grade cervical cancer (p = 0.032), high levels of Gli1 (p < 0.001) and CyclinD1 (p < 0.001) by immunohistochemical and quantitative RT-PCR analyses. Further biochemical studies using luciferase reporter, co-immunoprecipitation, subcellular fractionation and immunofluorescence analyses demonstrated that Zic2 can physically interact with Gli1 and retain it in the nucleus, which in turn increases Gli-mediated transcriptional activity. Gain- and loss-of-function analyses of Zic2 showed that Zic2 could increase Hh signalling activity, cell proliferation and anchorage-independent growth ability in cervical cancer cells. Conversely, deletion of the zinc finger domain at C-terminus of Zic2 significantly abrogated its interaction with Gli1, the retention of Gli1 in the nucleus, effects on Hh signalling activity and oncogenic properties in cervical cancer cells. Our findings suggest that Zic2 is a positive modulator increasing Gli1 transcriptional and oncogenic activity by retaining Gli1 in the nucleus of cervical cancer cells.


Asunto(s)
Adenocarcinoma/metabolismo , Núcleo Celular/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Neoplasias del Cuello Uterino/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/patología , Línea Celular Transformada , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Proteínas Nucleares/genética , ARN Mensajero/metabolismo , Transducción de Señal , Factores de Transcripción/genética , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/patología , Proteína con Dedos de Zinc GLI1
15.
Diabetes ; 60(1): 320-30, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20870970

RESUMEN

OBJECTIVE: Suppression of Kinesin-1 by antisense oligonucleotides, or overexpression of dominant-negative acting kinesin heavy chain, has been reported to affect the sustained phase of glucose-stimulated insulin secretion in ß-cells in vitro. In this study, we examined the in vivo physiological role of Kinesin-1 in ß-cell development and function. RESEARCH DESIGN AND METHODS: A Cre-LoxP strategy was used to generate conditional knockout mice in which the Kif5b gene is specifically inactivated in pancreatic ß-cells. Physiological and histological analyses were carried out in Kif5b knockout mice as well as littermate controls. RESULTS: Mice with ß-cell specific deletion of Kif5b (Kif5b(fl/)⁻:RIP2-Cre) displayed significantly retarded growth as well as slight hyperglycemia in both nonfasting and 16-h fasting conditions compared with control littermates. In addition, Kif5b(fl/)⁻:RIP2-Cre mice displayed significant glucose intolerance, which was not due to insulin resistance but was related to an insulin secretory defect in response to glucose challenge. These defects of ß-cell function in mutant mice were not coupled with observable changes in islet morphology, islet cell composition, or ß-cell size. However, compared with controls, pancreas of Kif5b(fl/)⁻:RIP2-Cre mice exhibited both reduced islet size and increased islet number, concomitant with an increased insulin vesicle density in ß-cells. CONCLUSIONS: In addition to being essential for maintaining glucose homeostasis and regulating ß-cell function, Kif5b may be involved in ß-cell development by regulating ß-cell proliferation and insulin vesicle synthesis.


Asunto(s)
Células Secretoras de Insulina/fisiología , Insulina/metabolismo , Cinesinas/antagonistas & inhibidores , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Western Blotting , Cartilla de ADN , Ensayo de Inmunoadsorción Enzimática , Genotipo , Humanos , Insulina/deficiencia , Secreción de Insulina , Células Secretoras de Insulina/efectos de los fármacos , Islotes Pancreáticos/metabolismo , Cinesinas/química , Cinesinas/deficiencia , Cinesinas/efectos de los fármacos , Cinesinas/genética , Masculino , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Oligonucleótidos Antisentido/farmacología , Fragmentos de Péptidos/química
16.
Methods Mol Biol ; 647: 113-23, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20694663

RESUMEN

The proliferation-associated transcription factor FOXM1 is essential for cell cycle progression into mitosis. Using synchronized human fibroblasts we detected, by immunostaining, that FOXM1 is localized predominantly in the cytoplasm in cells at late-G1 and S phases. Nuclear translocation occurs just before progression into the G2/M phase of the cell cycle and requires activity of the Raf/MEK/MAPK signaling pathway. Using pharmacological modulators, we demonstrated that activity of the Raf/MEK/MAPK pathway is both necessary and sufficient for the nuclear translocation of FOXM1. Consistent with FoxM1c being the major isoform expressed in proliferating fibroblasts, constitutively active MEK1 enhances the transactivating effect of FOXM1c, but not FOXM1b, on the cyclin B1 promoter in transient reporter assays. Here, we describe in detail the methods involved in generating these findings, which support the notion that FOXM1 is an effector of Raf/MEK/MAPK signaling in G2/M regulation.


Asunto(s)
Núcleo Celular/metabolismo , Factores de Transcripción Forkhead/metabolismo , Sistema de Señalización de MAP Quinasas , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Activación Transcripcional , Quinasas raf/metabolismo , Transporte Activo de Núcleo Celular/efectos de los fármacos , Animales , Línea Celular , Núcleo Celular/efectos de los fármacos , Fibroblastos/metabolismo , Genes Reporteros/genética , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Activación Transcripcional/efectos de los fármacos
17.
J Pineal Res ; 49(3): 301-11, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20695976

RESUMEN

Melatonin has been shown to inhibit the proliferation of malignant and transformed human prostate epithelial cells by transcriptional up-regulation of p27(Kip1) expression via MTNR1A receptor-mediated activation of protein kinase A (PKA) and protein kinase C (PKC) in parallel. Given that melatonin MTNR1A receptor is a G protein-coupled receptor, this study was conducted to identify the specific G proteins that mediate the antiproliferative action of melatonin on human prostate epithelial cells. In 22Rv1 and RWPE-1 cells, knockdown of either Gα(s) or Gα(q) , but not Gα(i2) expression by RNA interference, abrogated the effects of melatonin on p27(Kip1) and cell proliferation. Conversely, cellular overexpression of activated mutants of Gα(s) and Gα(q) in 22Rv1 and RWPE-1 cells mimicked the effects of melatonin on prostate epithelial cell antiproliferation by increasing p27(Kip1) expression through downstream activation of PKA and PKC in parallel. Moreover, melatonin or 2-iodomelatonin induced elevation of adenosine-3',5'-cyclic monophosphate (cAMP) in 22Rv1 and RWPE-1 cells. The effects of 2-iodomelatonin on cAMP were blocked by the nonselective MTNR1A/MTNR1B receptor antagonist luzindole but were not affected by the selective MTNR1B receptor antagonist 4-phenyl-2-propionamidotetraline (4-P-PDOT). Furthermore, knockdown of Gα(s) mitigated the stimulatory effects of 2-iodomelatonin on cAMP. Collectively, the data demonstrated, for the first time, functional coupling of MTNR1A receptor to Gα(s) in cancerous or transformed human cells expressing endogenous melatonin receptors. Our results also showed that dual activation of Gα(s) and Gα(q) proteins is involved in the signal transduction of MTNR1A receptor-mediated antiproliferative action of melatonin on human prostate epithelial cells.


Asunto(s)
Antioxidantes/farmacología , Proliferación Celular/efectos de los fármacos , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Melatonina/farmacología , Transducción de Señal , Línea Celular Tumoral , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Subunidad alfa de la Proteína de Unión al GTP Gi2/genética , Subunidad alfa de la Proteína de Unión al GTP Gi2/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Subunidades alfa de la Proteína de Unión al GTP Gs/genética , Papillomavirus Humano 18/genética , Humanos , Interferencia de ARN , Radioinmunoensayo , Receptores de Melatonina/antagonistas & inhibidores , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tetrahidronaftalenos/farmacología , Triptaminas/farmacología
18.
Mol Cell Neurosci ; 42(3): 219-25, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19607921

RESUMEN

The voltage-gated sodium channel Na(V)1.8 is expressed exclusively in nociceptive sensory neurons and plays an important role in pain pathways. Na(V)1.8 cannot be functionally expressed in non-neuronal cells even in the presence of beta-subunits. We have previously identified Pdzd2, a multi PDZ-domain protein, as a potential interactor for Na(V)1.8. Here we report that Pdzd2 binds directly to the intracellular loops of Na(V)1.8 and Na(V)1.7. The endogenous Na(V)1.8 current in sensory neurons is inhibited by antisense- and siRNA-mediated downregulation of Pdzd2. However, no marked change in pain behaviours is observed in Pdzd2-decificent mice. This may be due to compensatory upregulation of p11, another regulatory factor for Na(V)1.8, in dorsal root ganglia of Pdzd2-deficient mice. These findings reveal that Pdzd2 and p11 play collaborative roles in regulation of Na(V)1.8 expression in sensory neurons.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Dominios PDZ , Células Receptoras Sensoriales/metabolismo , Canales de Sodio/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Secuencia de Aminoácidos , Animales , Moléculas de Adhesión Celular , Células Cultivadas , Ganglios Espinales/citología , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Canal de Sodio Activado por Voltaje NAV1.7 , Canal de Sodio Activado por Voltaje NAV1.8 , Proteínas del Tejido Nervioso/genética , Dolor/metabolismo , Dimensión del Dolor , Unión Proteica , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Wistar , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Células Receptoras Sensoriales/citología , Alineación de Secuencia , Canales de Sodio/genética , Técnicas del Sistema de Dos Híbridos
19.
Curr Protein Pept Sci ; 10(1): 30-6, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19275670

RESUMEN

PDZ domains are versatile protein interaction modules with the ability to dimerize and to recognize internal and carboxy-terminal peptide motifs. Their function in mediating the formation of multi-molecular signaling complexes is best understood at neuronal and epithelial membranes. In a screen for interactors that regulate transcription factor function in pancreatic beta cells, we isolated two PDZ-containing proteins Bridge-1 (PSMD9) and PDZD2, which contain one and six PDZ domains, respectively. Here, we review their functions in the regulation of pancreatic beta cells as a nuclear coactivator or extracellular signaling molecule. Bridge-1 interacts with both E12 and PDX-1 to stimulate insulin promoter activity. Recent gain-of-function analysis in both cell and transgenic models has revealed its functions to regulate both insulin gene expression and pancreatic beta-cell survival. Little is known about the intracellular function of PDZD2 that is predominantly localized to the endoplasmic reticulum of INS-1E cells. Interestingly, PDZD2 is proteolytically processed by caspase-3 to generate a carboxy-terminal secreted protein (sPDZD2) containing two PDZ domains. Expressed in fetal pancreatic progenitor and INS-1E cells, sPDZD2 when added as recombinant protein exerts concentration-dependent mitogenic effects on beta-like cells. We propose that the PDZ domain proteins Bridge-1 and PDZD2 likely transduce signals that regulate insulin production, proliferation, and survival of pancreatic beta cells.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Células Secretoras de Insulina/citología , Proteínas de Neoplasias/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Adaptadoras Transductoras de Señales/aislamiento & purificación , Animales , Moléculas de Adhesión Celular , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/química , Células Secretoras de Insulina/metabolismo , Proteínas de Neoplasias/aislamiento & purificación , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/aislamiento & purificación , Transactivadores/genética , Transactivadores/aislamiento & purificación , Transactivadores/metabolismo
20.
Stem Cells Dev ; 18(7): 979-90, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19046020

RESUMEN

We recently reported the isolation and characterization of a population of pancreatic progenitor cells (PPCs) from early trimester human fetal pancreata. The PPCs, being the forerunners of adult pancreatic cell lineages, were amenable to growth and differentiation into insulin-secreting islet-like cell clusters (ICCs) upon stimulation by adequate morphogens. Of note, a novel morphogenic factor, PDZ-domain containing-2 (PDZD2) and its secreted form (sPDZD2) were ubiquitously expressed in the PPCs. Our goals for this study were to evaluate the potential role of sPDZD2 in stimulating PPC differentiation and to establish the optimal concentration for such stimulation. We found that 10(-9)M sPDZD2 promoted PPC differentiation, as evidenced by the upregulation of the pancreatic endocrine markers (PDX-1, NGN3, NEURO-D, ISL-1, NKX 2.2, NKX 6.1) and INSULIN mRNA. Inhibited endogenous production of sPDZD2 suppressed expression of these factors. Secreted PDZD2 treatment significantly elevated the C-peptide content of the ICCs and increased the basal rate of insulin secretion. However, they remained unresponsive to glucose stimulation, reflected by a minimal increase in GLUT-2 and GLUCOKINASE mRNA expression. Interestingly, sPDZD2 treatment induced increased expression of the L-type voltage-gated calcium channel (Ca(v)1.2) in the ICCs, triggering calcium ion influx under KCl stimulation and conferring an ability to secrete insulin in response to KCl. Pancreatic progenitor cells from 10- and 13-week fetal pancreata showed peak expression of endogenous sPDZD2, implying that sPDZD2 has a specific role in islet development during the first trimester. In conclusion, our data suggest that sPDZD2 promotes functional maturation of human fetal PPC-derived ICCs, thus enhancing its transplanting potentials.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/farmacología , Feto/metabolismo , Células Secretoras de Insulina/metabolismo , Potenciales de la Membrana/fisiología , Proteínas de Neoplasias/farmacología , Células Madre/metabolismo , Proteínas Adaptadoras Transductoras de Señales/biosíntesis , Antígenos de Diferenciación/biosíntesis , Péptido C/metabolismo , Calcio/metabolismo , Canales de Calcio Tipo L/metabolismo , Moléculas de Adhesión Celular , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Células Cultivadas , Feto/citología , Humanos , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/citología , Transporte Iónico/efectos de los fármacos , Transporte Iónico/fisiología , Potenciales de la Membrana/efectos de los fármacos , Proteínas de Neoplasias/biosíntesis , Cloruro de Potasio/farmacología , Células Madre/citología , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA