Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 15: 1427359, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39157519

RESUMEN

The B-box (BBX) family, which is a class of zinc finger transcription factors, exhibits special roles in plant growth and development as well as in plants' ability to cope with various stresses. Even though Rubus chingii is an important traditional medicinally edible plant in east Asia, there are no comprehensive studies of BBX members in R. chingii. In this study, 32 RcBBX members were identified, and these were divided into five groups. A collinearity analysis showed that gene duplication events were common, and when combined with a motif analysis of the RcBBX genes, it was concluded that group V genes might have undergone deletion of gene fragments or mutations. Analysis of cis-acting elements revealed that each RcBBX gene contained hormone-, light-, and stress-related elements. Expression patterns of the 32 RcBBX genes during fruit ripening revealed that highest expression occurred at the small green fruit stage. Of note, the expression of several RcBBX genes increased rapidly as fruit developed. These findings, combined with the expression profiles of anthocyanin biosynthetic genes during fruit ripening, allowed us to identify the nuclear-targeted RcBBX26, which positively promoted anthocyanin production in R. chingii. The collective findings of this study shed light on the function of RcBBX genes in different tissues, developmental stages, and in response to two abiotic stresses.

2.
Plants (Basel) ; 13(5)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38475427

RESUMEN

Salvia miltiorrhiza is a plant commonly used in traditional Chinese medicine. Its material bases for treating diseases are tanshinones and phenolic acids, including salvianolic acids. Histone deacetylase proteins (HDACs) are a class of specific functional enzymes that interact with acetylation groups on the N-terminal lysine of histone proteins further regulate gene transcription through structural changes at the chromatin level. HDACs involved in the growth and development of various plants, and induced by plant hormones to regulate the internal environment of plants to resist stress, at the same time affect the accumulation of some secondary metabolites. However, the role of SmHDACs on the accumulation of salvianolic acid in S. miltiorrhiza remains unclear. In this study, 16 SmHDACs genes were identified from the high-quality S. miltiorrhiza genome, their physicochemical properties were predicted. In phylogenetic trees co-constructed with HDACs proteins from other plants, SmHDACs was divided into three subfamilies, each with similar motif and conserved domain composition. The distribution of the three subfamilies is similar to that of dicotyledonous plants. Chromosome localization analysis showed that SmHDACs genes were randomly located. Cis-acting element analysis predicted that SmHDACs gene expression may be related to and induced by various phytohormones, such as MeJA and ABA. By combining the expression pattern and co-expression network induced by phytohormones, we speculate that SmHDACs may further influence the synthesis of salvianolic acid, and identified SmHDA5, a potential functional gene, then speculate its downstream target based on the co-expression network. In summary, we analyzed the SmHDACs gene family of S. miltiorrhiza and screened out the potential functional gene SmHDA5. From the perspective of epigenetics, we proposed the molecular mechanism of plant hormone promoting salvianolic acid synthesis, which filled the gap in the subdivision of histone deacetylase in S. miltiorrhiza research, provided a theoretical basis for the culture and transformation of S. miltiorrhiza germplasm resources.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...