Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 283: 112002, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33516096

RESUMEN

Conversion of natural forest to anthropogenic land use systems (LUS) often leads to considerable loss of carbon, however, proper management of these LUS may reverse the trend. A study was conducted in a semi-deciduous forest zone of Côte d'Ivoire to assess soil microbial functioning and soil organic carbon (SOC) stocks in varying tree stands, and to determine whether complex tree stands can mimic the natural forest in terms of these soil attributes. Tree plantations studied were monocultures of teak (Tectona grandis) and full-sun cocoa (Theobroma cacao L.), and a mixture of four tree species (MTS) with Tectona grandis, Gmelina arborea, Terminalia ivoriensis and Terminalia superba. An adjacent natural forest was considered as the reference. Each of these LUS had five replicate stands where soil (0-10 cm depth) samples were taken for physico-chemical parameters and microbial biomass-C (MBC), microbial activities, MBC/SOC ratio and metabolic quotient (qCO2). SOC and total N stocks were also calculated. The C mineralization rate (mg C-CO2 kg-1) and mineral N concentration (mg kg-1) drastically declined in the monocultures of cocoa (154.9 ± 29.3 and 49.8 ± 9.8, respectively) and teak (179.6 ± 27.1 and 54.1 ± 7.3) compared to the natural forest (258.4 ± 21.9 and 108.7 ± 12). However, values in MTS (194.7 ± 24.6 and 105.4 ± 7.4) were not significantly different from those in the natural forest. Similarly, SOC stocks in MTS (28.8 ± 1.9 Mg ha-1) were not significantly different from those recorded in the natural forest (32.9 ± 1.7 Mg ha-1) whereas teak (25.4 ± 1.7 Mg ha-1) and cocoa (23.1 ± 3.4 Mg ha-1) exhibited significantly lower values. Despite the acidic soil and recalcitrant litter conditions, increased MBC/SOC ratio and decreased qCO2 were recorded in the monocrops, suggesting a probable increase in the fungi/bacteria ratio. The complex MTS stand was found to mimic the natural forest in terms of soil microbial activity and organic status, due to the provision of a diversity of litter quality, which may serve as a basis for developing a climate smart timber system in West and Central Africa.


Asunto(s)
Carbono , Suelo , Bosques , Microbiología del Suelo , Árboles
2.
PLoS One ; 4(4): e5308, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19390586

RESUMEN

BACKGROUND: The Ebola virus is transmitted by direct contact with bodily fluids of infected individuals, eliciting death rates as high as 90% among infected humans. Currently, replication defective adenovirus-based Ebola vaccine is being studied in a phase I clinical trial. Another Ebola vaccine, based on an attenuated vesicular stomatitis virus has shown efficacy in post-exposure treatment of nonhuman primates to Ebola infection. In this report, we modified the common recombinant adenovirus serotype 5-based Ebola vaccine expressing the wild-type ZEBOV glycoprotein sequence from a CMV promoter (Ad-CMVZGP). The immune response elicited by this improved expression cassette vector (Ad-CAGoptZGP) and its ability to afford protection against lethal ZEBOV challenge in mice was compared to the standard Ad-CMVZGP vector. METHODOLOGY/PRINCIPAL FINDINGS: Ad-CMVZGP was previously shown to protect mice, guinea pigs and nonhuman primates from an otherwise lethal challenge of Zaire ebolavirus. The antigenic expression cassette of this vector was improved through codon optimization, inclusion of a consensus Kozak sequence and reconfiguration of a CAG promoter (Ad-CAGoptZGP). Expression of GP from Ad-CAGoptZGP was substantially higher than from Ad-CMVZGP. Ad-CAGoptZGP significantly improved T and B cell responses at doses 10 to 100-fold lower than that needed with Ad-CMVZGP. Additionally, Ad-CAGoptZGP afforded full protections in mice against lethal challenge at a dose 100 times lower than the dose required for Ad-CMVZGP. Finally, Ad-CAGoptZGP induced full protection to mice when given 30 minutes post-challenge. CONCLUSIONS/SIGNIFICANCE: We describe an improved adenovirus-based Ebola vaccine capable of affording post-exposure protection against lethal challenge in mice. The molecular modifications of the new improved vaccine also translated in the induction of significantly enhanced immune responses and complete protection at a dose 100 times lower than with the previous generation adenovirus-based Ebola vaccine. Understanding and improving the molecular components of adenovirus-based vaccines can produce potent, optimized product, useful for vaccination and post-exposure therapy.


Asunto(s)
Adenoviridae/genética , Vacunas contra el Virus del Ébola/genética , Fiebre Hemorrágica Ebola/prevención & control , Animales , Linfocitos B/metabolismo , Células Cultivadas , Vacunas contra el Virus del Ébola/metabolismo , Ebolavirus/patogenicidad , Fiebre Hemorrágica Ebola/inmunología , Humanos , Ratones , Ratones Endogámicos , Pruebas de Neutralización , Linfocitos T/metabolismo , Vacunas Virales/genética , Vacunas Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...