Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 161(12)2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39319650

RESUMEN

The ring-opening reaction of aromatic molecules is a significant and critical process for the construction of carbon-based and related functional materials with desired structures and properties. However, direct observation and control of such a process at a molecular level remains a challenge. Here, we employed the octahedral voids in endohedral metallofullerene (EMF) crystals as nanoreactors to accommodate aromatic m-xylene molecules and regulate the ring-opening reaction of guest m-xylene by applying a high pressure. We found that the ring-opening reaction of m-xylenes strongly depends on the degree of charge transfer between m-xylene and EMF, which can be tuned by varying the electronegativity of the carbon cages with different endohedral metals. A positive relationship between the electronegativity of fullerenes and the reactivity of m-xylene was revealed. This work demonstrates the potential of tuning the ring-opening reaction of aromatic molecules by charge transfer and manipulates the reaction at a molecule level, providing new insights into the synthesis of carbon materials and fullerene derivatives.

2.
J Am Chem Soc ; 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39279160

RESUMEN

Pressure-induced emission (PIE) is a compelling phenomenon that can activate luminescence within nonemissive materials. However, PIE in nonemissive organic materials has never been achieved. Herein, we present the first observation of PIE in an organic system, specifically within nonemissive azobenzene derivatives. The emission of 1,2-bis(4-(anthracen-9-yl)phenyl)diazene was activated at 0.52 GPa, primarily driven by local excitation promotion induced by molecular conformational changes. Complete photoisomerization suppression of the molecule was observed at 1.5 GPa, concurrently accelerating the emission enhancement to 3.53 GPa. Differing from the key role of isomerization inhibition in conventional perception, our findings demonstrate that the excited-state constituent is the decisive factor for emission activation, providing a potentially universal approach for high-efficiency azobenzene emission. Additionally, PIE was replicated in the analogue 1,2-bis(4-(9H-carbazol-9-yl)phenyl)diazene, confirming the general applicability of our findings. This work marks a significant breakthrough within the PIE paradigm and paves the novel high-pressure route for crystalline-state photoisomerization investigation.

3.
ACS Nano ; 18(26): 17053-17064, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38870206

RESUMEN

Second harmonic generation (SHG) in van der Waals (vdW) materials has garnered significant attention due to its potential for integrated nonlinear optical and optoelectronic applications. Stacking faults in vdW materials are a typical kind of planar defect that introduces a degree of freedom to modulate the crystal symmetry and resultant SHG response. However, the physical origin and tunability of stacking-fault-governed SHG in vdW materials remain unclear. Here, taking the intrinsically centrosymmetric vdW RhI3 as an example, we theoretically reveal the origin of stacking-fault-governed SHG response, where the SHG response comes from the energetically favorable AC̅ stacking fault of which the electrical transitions along the high-symmetry paths Γ-M and Γ-K in the Brillion zone play the dominant role at 810 nm. Such a stacking-fault-governed SHG response is further confirmed via structural characterizations and SHG measurements. Furthermore, by applying hydrostatic pressure on RhI3, the correlation between structural evolution and SHG response is revealed with SHG enhancement up to 6.9 times, where the decreased electronic transition energies and higher momentum matrix elements due to the stronger interlayer interactions upon compression magnify the SHG susceptibility. This study develops a promising foundation for nonlinear nano-optics applications through the strategic design of stacking faults.

4.
Chem Sci ; 14(42): 11629-11637, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37920334

RESUMEN

Unlike the known aggregation-caused quenching (ACQ) that the enhancement of π-π interactions in rigid organic molecules usually decreases the luminescent emission, here we show that an intermolecular "head-to-head" π-π interaction in the phenanthrene crystal, forming the so-called "transannular effect", could result in a higher degree of electron delocalization and thus photoluminescent emission enhancement. Such a transannular effect is molecular configuration and stacking dependent, which is absent in the isomers of phenanthrene but can be realized again in the designed phenanthrene-based cocrystals. The transannular effect becomes more significant upon compression and causes anomalous piezoluminescent enhancement in the crystals. Our findings thus provide new insights into the effects of π-π interactions on luminescence emission and also offer new pathways for designing efficient aggregation-induced emission (AIE) materials to advance their applications.

5.
Nat Commun ; 14(1): 7860, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38030640

RESUMEN

As an advanced amorphous material, sp3 amorphous carbon exhibits exceptional mechanical, thermal and optical properties, but it cannot be synthesized by using traditional processes such as fast cooling liquid carbon and an efficient strategy to tune its structure and properties is thus lacking. Here we show that the structures and physical properties of sp3 amorphous carbon can be modified by changing the concentration of carbon pentagons and hexagons in the fullerene precursor from the topological transition point of view. A highly transparent, nearly pure sp3-hybridized bulk amorphous carbon, which inherits more hexagonal-diamond structural feature, was synthesized from C70 at high pressure and high temperature. This amorphous carbon shows more hexagonal-diamond-like clusters, stronger short/medium-range structural order, and significantly enhanced thermal conductivity (36.3 ± 2.2 W m-1 K-1) and higher hardness (109.8 ± 5.6 GPa) compared to that synthesized from C60. Our work thus provides a valid strategy to modify the microstructure of amorphous solids for desirable properties.

6.
Sci Rep ; 13(1): 2032, 2023 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-36739468

RESUMEN

Rheumatoid arthritis (RA) is a common autoimmune disease that can lead to severe joint damage and disability. And early diagnosis and treatment of RA can avert or substantially slow the progression of joint damage in up to 90% of patients, thereby preventing irreversible disability. Previous research indicated that 50% of the risk for the development of RA is attributable to genetic factors, but the pathogenesis is not well understood. Thus, it is urgent to identify biomarkers to arrest RA before joints are irreversibly damaged. Here, we first use the Robust Rank Aggregation method (RRA) to identify the differentially expressed genes (DEGs) between RA and normal samples by integrating four public RA patients' mRNA expression data. Subsequently, these DEGs were used as the input for the weighted gene co-expression network analysis (WGCNA) approach to identify RA-related modules. The function enrichment analysis suggested that the RA-related modules were significantly enriched in immune-related actions. Then the hub genes were defined as the candidate genes. Our analysis showed that the expression levels of candidate genes were significantly associated with the RA immune microenvironment. And the results indicated that the expression of the candidate genes can use as predictors for RA. We hope that our method can provide a more convenient approach for the early diagnosis of RA.


Asunto(s)
Artritis Reumatoide , Genes Esenciales , Humanos , Artritis Reumatoide/genética , Biomarcadores , Biología Computacional/métodos , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes
7.
Chem Sci ; 14(6): 1479-1484, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36794196

RESUMEN

A novel piezo-activated luminescent material with wide range modulation of the luminescence wavelength and a giant intensity enhancement upon compression was prepared using a strategy of molecular doping. The doping of THT molecules into TCNB-perylene cocrystals results in the formation of a weak but pressure-enhanced emission center in the material at ambient pressure. Upon compression, the emissive band from the undoped component TCNB-perylene undergoes a normal red shift and emission quenching, while the weak emission center shows an anomalous blue shift from 615 nm to 574 nm and a giant luminescence enhancement up to 16 GPa. Further theoretical calculations show that doping by THT could modify intermolecular interactions, promote molecular deformation, and importantly, inject electrons into the host TCNB-perylene upon compression, which contributes to the novel piezochromic luminescence behavior. Based on this finding, we further propose a universal approach to design and regulate the piezo-activated luminescence of materials by using other similar dopants.

8.
Inorg Chem ; 61(48): 19274-19281, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36383131

RESUMEN

Copper(I) thiocyanate (CuSCN) is a p-type semiconductor with exceptional properties for optoelectronic devices such as solar cells, thin-film transistors , organic light-emitting diodes, etc. Understanding the structure-optical property relationships in CuSCN is critical for its optoelectronic applications. Herein, high-pressure techniques combined with theoretical calculations are used to thoroughly investigate the structural and optical changes of CuSCN upon compression. Under high pressure, CuSCN exhibits a progressive decrease of the band gap with different rates, which is relevant to the ß to α phase transition in CuSCN and the subsequent amorphization through polymerization. UV-vis spectra measurements reveal a reduction in band gap from 3.4 to 1.3 eV upon decompression to ambient conditions. Such transitions could be attributed to the pressure-induced rotation of CuNS3 tetrahedron and bond length shrinkage. The severe distortion of the polyhedral units prompts breakdown of the structure and thus the amorphization, which is quenchable to ambient conditions. Our study demonstrates that high pressure can be utilized to adjust the structure and optical characteristics of CuSCN compound, potentially extending the material's uses in optoelectronic devices.

9.
Spectrochim Acta A Mol Biomol Spectrosc ; 283: 121723, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-35964353

RESUMEN

Studying the stimuli-responsive properties of luminescent materials is important for their applications, while the luminescent materials studied up to now usually exhibit emission quenching and red shift in photoluminescence (PL) energy upon compression. Designing luminescent material with abnormal pressure responses remains challenging. Here, we report the discovery of abnormal luminescent properties of FCO-CzS upon compression. A theoretical study on the excited state decay process has been carried out for FCO-CzS at high pressure by hybrid quantum mechanics/molecular mechanics (QM/MM). A significant emission enhancement and blue shift are observed as pressure increases up to 20 GPa. This is opposite to the pressure response behaviours reported for other luminescent materials. It is further revealed that both the unique molecular configuration and the electronic structure change contribute to the anomalous pressure-responsive emission of FCO-CzS, which reduces the non-radiative rate and increases the radiative rate, respectively. Our study provides a strategy for the design of luminescent materials with desired pressure responses.


Asunto(s)
Luminiscencia , Simulación de Dinámica Molecular , Electrónica , Conformación Molecular
10.
Nature ; 599(7886): 599-604, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34819685

RESUMEN

Amorphous materials inherit short- and medium-range order from the corresponding crystal and thus preserve some of its properties while still exhibiting novel properties1,2. Due to its important applications in technology, amorphous carbon with sp2 or mixed sp2-sp3 hybridization has been explored and prepared3,4, but synthesis of bulk amorphous carbon with sp3 concentration close to 100% remains a challenge. Such materials inherit the short-/medium-range order of diamond and should also inherit its superior properties5. Here, we successfully synthesized millimetre-sized samples-with volumes 103-104 times as large as produced in earlier studies-of transparent, nearly pure sp3 amorphous carbon by heating fullerenes at pressures close to the cage collapse boundary. The material synthesized consists of many randomly oriented clusters with diamond-like short-/medium-range order and possesses the highest hardness (101.9 ± 2.3 GPa), elastic modulus (1,182 ± 40 GPa) and thermal conductivity (26.0 ± 1.3 W m-1 K-1) observed in any known amorphous material. It also exhibits optical bandgaps tunable from 1.85 eV to 2.79 eV. These discoveries contribute to our knowledge about advanced amorphous materials and the synthesis of bulk amorphous materials by high-pressure and high-temperature techniques and may enable new applications for amorphous solids.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...