Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Vaccine X ; 16: 100444, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38327768

RESUMEN

Although the global pandemic of SARS-CoV-2 has passed, there are still regional outbreaks that continue to jeopardize human health. Hence, there is still a great deal of interest in developing an efficient vaccine that can quickly and effectively prevent reemerging outbreaks of SARS-CoV-2. Delta variant was once a dominant strain in the world in 2021, and we first constructed a recombinant RBDdelta-Fc fusion vaccine by coupling the RBD of Delta variant with the human Fc fragment. This Fc fusion strategy increases the immunogenicity of the recombinant RBD vaccine, with a long-lasting high level of IgG antibodies and neutralizing antibodies induced by RBDdelta-Fc vaccine. This RBDdelta-Fc vaccine, as well as the RBD-Fc vaccine prepared in our previously study, could trigger a durable immune effect by the heterologous boosting immunity, and the RBD-Fc induced a quicker humoral immune response than the homologous immunization with inactivated vaccines. In conclusion, the Fc fusion strategy has a significant role in enhancing the immunogenicity of recombinant protein vaccines, thus promising the development of a safe and efficient vaccine for the heterologous boosting against SARS-CoV-2.

2.
Materials (Basel) ; 17(2)2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38255445

RESUMEN

Electromagnetic rail launch technology has attracted increasing attention owing to its advantages in terms of range, firepower, and speed. However, due to electricity-magnetism-heat-force coupling, the surface of the armature-rail friction pair becomes severely damaged, which restricts the development of this technology. A series of studies have been conducted to reduce the damage of the armature-rail friction pair, including an analysis of the damage mechanism and protection strategies. In this study, various types of surface damage were classified into mechanical, electrical, and coupling damages according to their causes. This damage is caused by factors such as mechanical friction, mechanical impact, and electric erosion, either individually or in combination. Then, a detailed investigation of protection strategies for reducing damage is introduced, including material improvement through the use of novel combined deformation and heat treatment processes to achieve high strength and high conductivity, as well as surface treatment technologies such as structural coatings for wear resistance and functional coatings for ablation and melting resistance. Finally, future development prospects of armature-rail friction pair materials are discussed. This study provides a theoretical basis and directions for the development of high-performance materials for the armature-rail friction pair.

3.
Adv Sci (Weinh) ; 11(10): e2308153, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38112232

RESUMEN

The development of green, controllable, and simplified pathways for rapid dopamine polymerization holds significant importance in the field of polydopamine (PDA) surface chemistry. In this study, a green strategy is successfully devised to accelerate and control the polymerization of dopamine through the introduction of ozone (O3 ). The findings reveal that ozone serves as an eco-friendly trigger, significantly accelerating the dopamine polymerization process across a broad pH range, spanning from 4.0 to 10.0. Notably, the deposition rate of PDA coatings on a silicon wafer reaches an impressive value of ≈64.8 nm h-1 (pH 8.5), which is 30 times higher than that of traditional air-assisted PDA and comparable to the fastest reported method. Furthermore, ozone exhibits the ability to accelerate dopamine polymerization even under low temperatures. It also enables control over the inhibition-initiation of the polymerization process by regulating the "ON/OFF" mode of the ozone gas. Moreover, the ozone-induced PDA coatings demonstrate exceptional characteristics, including high homogeneity, good hydrophilicity, and remarkable chemical and mechanical stability. Additionally, the ozone-induced PDA coatings can be rapidly and effectively deposited onto a wide range of substrates, particularly those that are adhesion-resistant, such as polytetrafluoroethylene (PTFE).

4.
Int J Gen Med ; 16: 6051-6064, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38148887

RESUMEN

Background: Psoriasis is a common chronic, recurrent, and inflammatory skin disease. Identifying novel and potential biomarkers is valuable in the treatment and diagnosis of psoriasis. The goal of this study was to identify novel key biomarkers of psoriasis and analyze the potential underlying mechanisms. Methods: Psoriasis-related datasets were downloaded from the Gene Expression Omnibus database to screen differential genes in the datasets. Functional and pathway enrichment analyses were performed on the differentially expressed genes (DEGs). Candidate biomarkers for psoriasis were identified from the GSE30999 and GSE6710 datasets using four machine learning algorithms, namely, random forest (RF), least absolute shrinkage and selection operator (LASSO) logistic regression, weighted gene co-expression network analysis (WGCNA), and support vector machine recursive feature elimination (SVM-RFE), and were validated using the GSE41662 dataset. Next, we used CIBERSORT and single-cell RNA analysis to explore the relationship between ADAM23 and immune cells. Finally, we validated the expression of the identified biomarkers expressions in human and mouse experiments. Results: A total of 709 overlapping DEGs were identified, including 426 upregulated and 283 downregulated genes. Enhanced by enrichment analysis, the differentially expressed genes (DEGs) were spatially arranged in relation to immune cell involvement, immune-activating processes, and inflammatory signals. Based on the enrichment analysis, the DEGs were mapped to immune cell involvement, immune-activating processes, and inflammatory signals. Four machine learning strategies and single-cell RNA sequencing analysis showed that ADAM23, a disintegrin and metalloprotease, may be a unique, critical biomarker with high diagnostic accuracy for psoriasis. Based on CIBERSORT analysis, ADAM23 was found to be associated with a variety of immune cells, such as macrophages and mast cells, and it was upregulated in the macrophages of psoriatic lesions in patients and mice. Conclusion: ADAM23 may be a potential biomarker in the diagnosis of psoriasis and may contribute to the pathogenesis by regulating immunological activity in psoriatic lesions.

5.
Polymers (Basel) ; 15(18)2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37765582

RESUMEN

Polybutene-1 with form I crystals exhibits excellent creep resistance and environmental stress crack resistance. The filaments of polybutene-1 and its random copolymer with 4 mol% ethylene co-units were produced via extrusion melt spinning, which are expected to be in form I states and show outstanding mechanical properties. The variances in microstructure, crystallization-melting behavior, and mechanical properties between homopolymer and copolymer filaments were analyzed using SEM, SAXS/WAXD, DSC, and tensile tests. The crystallization of form II and subsequent phase transition into form I finished after the melt-spinning process in the copolymer sample while small amounts of form II crystals remained in homopolymer filaments. Surprisingly, copolymer filaments exhibited higher tensile strength and Young's modulus than homopolymer filaments, while the homopolymer films showed better mechanical properties than copolymer films. The high degree of orientation and long fibrous crystals play a critical role in the superior properties of copolymer filaments. The results indicate that the existence of ethylene increases the chain flexibility and benefits the formation of intercrystalline links during spinning, which contributes to an enhancement of mechanical properties. The structure-property correlation of melt-spun PB-1 filaments provides a reference for the development of polymer fibers with excellent creep resistance.

6.
Adv Mater ; 35(47): e2304686, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37540488

RESUMEN

Solid-state lithium-metal batteries constructed by in-situ solidification of cyclic ether are considered to be a critical strategy for the next generation of solid-state batteries with high energy density and safety. However, the poor thermal/electrochemical stability of linear polyethers and severe interfacial reactions limit its further development. Herein, in-situ ring-opening hybrid crosslinked polymerization is proposed for organic/inorganic hybrid polymer electrolyte (HCPE) with superior ionic conductivity of 2.22 × 10-3 S cm-1 at 30 °C, ultrahigh Li+ transference number of 0.88, and wide electrochemical stability window of 5.2 V. These allow highly stable lithium stripping/plating cycling for over 1000 h at 1 mA cm-2 , which also reveal a well-defined interfacial stabilization mechanism. Thus, HCPE endows assembled solid-state lithium-metal batteries with excellent long-cycle performance over 600 cycles at 2 C (25 °C) and superior capacity retention of 92.1%. More importantly, the proposed noncombustible HCPE opens up a new frontier to promote the practical application of high safety and high energy density solid-state batteries via in-situ solidification.

7.
J Inflamm Res ; 16: 1867-1877, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37143821

RESUMEN

Background: SARS-CoV-2-induced acute lung injury but its nucleocapsid (N) and/or Spike (S) protein involvements in the disease pathology remain elusive. Methods: In vitro, the cultured THP-1 macrophages were stimulated with alive SARS-CoV-2 virus at different loading dose, N protein or S protein with/without TICAM2-siRNA, TIRAP-siRNA or MyD88-siRNA. The TICAM2, TIRAP and MyD88 expression in the THP-1 cells after N protein stimulation were determined. In vivo, naïve mice or mice with depletion macrophages were injected with N protein or dead SARS-CoV-2. The macrophages in the lung were analyzed with flow cytometry, and lung sections were stained with H&E or immunohistochemistry. Culture supernatants and serum were harvested for cytokines measurements with cytometric bead array. Results: Alive SARS-CoV-2 virus or N protein but not S protein induced high cytokine releases from macrophages in a time or virus loading dependent manner. MyD88 and TIRAP but not TICAM2 were highly involved in macrophage activation triggered by N protein whilst both inhibited with siRNA decreased inflammatory responses. Moreover, N protein and dead SARS-CoV-2 caused systemic inflammation, macrophage accumulation and acute lung injury in mice. Macrophage depletion in mice decreased cytokines in response to N protein. Conclusion: SARS-CoV-2 and its N protein but not S protein induced acute lung injury and systemic inflammation, which was closely related to macrophage activation, infiltration and release cytokines.

8.
Nurs Open ; 10(5): 3104-3112, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36567504

RESUMEN

BACKGROUND: Most nursing interns have suffered some form of workplace violence in clinical settings, which has been linked to the jeopardizing of patient safety. Although previous research studies have examined the effect of workplace violence on patient safety, few studies have examined whether workplace violence is associated with patient safety through professional identity and professional burnout among nursing interns. AIMS: To test whether professional identity and professional burnout play mediating roles in the relationship of workplace violence and patient safety among nursing interns. DESIGN: Cross-sectional study. METHODS: The study included 466 nursing interns from three tertiary grade A hospitals. The Workplace Violence Scale, the Professional Identity Scale, the Maslach Burnout Inventory-General Survey, and the Patient Safety Behaviour Scale were used to gather data. Associations among workplace violence, professional identity, professional burnout, and patient safety were assessed by correlation and the serial-multiple mediation analysis. RESULTS: Workplace violence, professional identity, professional burnout and patient safety were significantly correlated. Workplace violence can have a direct positive impact on patient safety of nursing interns, but also an indirect impact on patient safety through three paths: the independent mediating role of professional identity, the independent mediating role of professional burnout, and the chain mediating role of professional identity and professional burnout. CONCLUSIONS: Our findings suggest that workplace violence can affect patient safety through decreasing professional identity and increasing professional burnout among nursing interns. Interventions aimed at decreasing workplace violence among nursing interns would be beneficial for professional attitude and patient safety.


Asunto(s)
Agotamiento Profesional , Personal de Enfermería en Hospital , Seguridad del Paciente , Violencia Laboral , Hospitales , Encuestas y Cuestionarios , Humanos , Identificación Social , Personal de Enfermería en Hospital/psicología , Reorganización del Personal , Estudios Transversales , China , Masculino , Femenino , Adulto
9.
Front Immunol ; 13: 939311, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36032136

RESUMEN

Background: Owing to the coronavirus disease 2019 (COVID-19) pandemic and the emergency use of different types of COVID-19 vaccines, there is an urgent need to consider the effectiveness and persistence of different COVID-19 vaccines. Methods: We investigated the immunogenicity of CoronaVac and Covilo, two inactivated vaccines against COVID-19 that each contain inactivated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The levels of neutralizing antibodies to live SARS-CoV-2 and the inhibition rates of neutralizing antibodies to pseudovirus, as well as the immunoglobulin (Ig)G and IgM responses towards the spike (S) and nucleocapsid (N) protein of SARS-CoV-2 at 180 days after two-dose vaccination were detected. Results: The CoronaVac and Covilo vaccines induced similar antibody responses. Regarding neutralizing antibodies to live SARS-CoV-2, 77.9% of the CoronaVac vaccine recipients and 78.3% of the Covilo vaccine recipients (aged 18-59 years) seroconverted by 28 days after the second vaccine dose. Regarding SARS-CoV-2-specific antibodies, 97.1% of the CoronaVac vaccine recipients and 95.7% of the Covilo vaccine recipients seroconverted by 28 days after the second vaccine dose. The inhibition rates of neutralizing antibody against a pseudovirus of the SARS-CoV-2 Delta variant were significantly lower compared with those against a pseudovirus of wildtype SARS-CoV-2. Associated with participant characteristics and antibody levels, persons in the older age group and with basic disease, especially a chronic respiratory disease, tended to have lower anti-SARS-CoV-2 antibody seroconversion rates. Conclusion: Antibodies that were elicited by these two inactivated COVID-19 vaccines appeared to wane following their peak after the second vaccine dose, but they persisted at detectable levels through 6 months after the second vaccine dose, and the effectiveness of these antibodies against the Delta variant of SARS-CoV-2 was lower than their effectiveness against wildtype SARS-CoV-2, which suggests that attention must be paid to the protective effectiveness, and its persistence, of COVID-19 vaccines on SARS-CoV-2 variants.


Asunto(s)
COVID-19 , Vacunas Virales , Anciano , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Atención , Vacunas contra la COVID-19 , Estudios de Cohortes , Humanos , Inmunoglobulina G , SARS-CoV-2
10.
Materials (Basel) ; 15(16)2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-36013673

RESUMEN

Cermet coatings deposited using high-velocity oxy-fuel (HVOF) are widely used due to their excellent wear and corrosion resistance. The new agglomeration-rapid sintering method is an excellent candidate for the preparation of WC-Co-Cr feedstock powders. In this study, four different WC-10Co-4Cr feedstock powders containing WC particles of different sizes were prepared by the new agglomeration-rapid sintering method and deposited on steel substrates using the HVOF technique. The microstructures and mechanical properties of the coatings were investigated using scanning electron microscopy, X-ray diffraction, nanoindentation, and Vickers indentation. The through-thickness residual stress profiles of the coatings and substrate materials were determined using neutron diffraction. We found that the microstructures and mechanical properties of the coatings were strongly dependent on the WC particle size. Decarburization and anisotropic mechanical behaviors were exhibited in the coatings, especially in the nanostructured coating. The coatings containing nano- and medium-sized WC particles were dense and uniform, with a high Young's modulus and hardness and the highest fracture toughness among the four coatings. As the WC particle size increased, the compressive stress in the coating increased considerably. Knowledge of these relationships enables the optimization of feedstock powder design to achieve superior mechanical performance of coatings in the future.

11.
Emerg Microbes Infect ; 11(1): 1994-2006, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35787233

RESUMEN

Coxsackievirus A16 (CVA16) is one of the major pathogens responsible for human hand, foot, and mouth disease (HFMD), which has threatened the health of young children, particularly in Asia-Pacific nations. Vaccination is an effective strategy for protecting children from CVA16 infection. However, there is currently no licensed CVA16 vaccine for use in humans. In this study, we isolated a high-growth CVA16 virus strain in MRC-5 cells and developed an MRC-5-adapted vaccine candidate strain termed CVA16-393 via two rounds of plaque purification. The CVA16-393 strain was grouped into the B1b subgenotype and grew to a titre of over 107 TCID50/ml in MRC-5 cells. The VP1 gene region of this strain, which contains the major neutralizing epitopes, displayed high stability during serial passages. The inactivated whole-virus vaccine produced by the CVA16-393 strain induced an effective neutralizing antibody response in Meriones unguiculatus (gerbils) after two doses of intraperitoneal inoculation. One week after the booster immunization, the geometric mean titres of the neutralizing antibodies for the 10246, 40812TXT, 11203SD, TJ-224 and CA16-194 strains from different regions of China were 137.8, 97.8, 113.4, 64.1 and 122.3, respectively. A CVA16 vaccine dose above 25 U was also able to provide 100% cross-protection against lethal challenges with these five clinical strains in gerbils. Immunization at a one-week interval could maintain a high level of neutralizing antibody titres for at least 8 weeks. Thus, the vaccine produced by this CVA16-393 strain might be promising.


Asunto(s)
Enterovirus Humano A , Enterovirus , Enfermedad de Boca, Mano y Pie , Vacunas Virales , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Niño , Preescolar , Enterovirus/genética , Enterovirus Humano A/genética , Gerbillinae , Enfermedad de Boca, Mano y Pie/prevención & control , Humanos , Vacunas de Productos Inactivados
12.
Eur J Hum Genet ; 30(8): 922-929, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35322240

RESUMEN

The human leucocyte antigen (HLA) loci have been widely characterized to be associated with viral infectious diseases using either HLA allele frequency-based association or in silico predicted studies. However, there is less experimental evidence to link the HLA alleles with COVID-19 and other respiratory infectious diseases, particularly in the lung cells. To examine the role of HLA alleles in response to coronavirus and other respiratory viral infections in disease-relevant cells, we designed a two-stage study by integrating publicly accessible RNA-seq data sets, and performed allelic expression (AE) analysis on heterozygous HLA genotypes. We discovered an increased AE pattern accompanied with overexpression of HLA-B gene in SARS-CoV-2-infected human lung epithelial cells. Analysis of independent data sets verified the respiratory virus-induced AE of HLA-B gene in lung cells and tissues. The results were further experimentally validated in cultured lung cells infected with SARS-CoV-2. We further uncovered that the antiviral cytokine IFNß contribute to AE of the HLA-B gene in lung cells. Our analyses provide a new insight into allelic influence on the HLA expression in association with SARS-CoV-2 and other common viral infectious diseases.


Asunto(s)
COVID-19 , SARS-CoV-2 , Desequilibrio Alélico , COVID-19/genética , Antígenos HLA/genética , Antígenos HLA-B/genética , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Pulmón
13.
Front Microbiol ; 13: 1079764, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36699595

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel coronavirus that caused a global outbreak of coronavirus disease 2019 (COVID-19) pandemic. To elucidate the mechanism of SARS-CoV-2 replication and immunogenicity, we performed a comparative transcriptome profile of mRNA and long non-coding RNAs (lncRNAs) in human lung epithelial cells infected with the SARS-CoV-2 wild-type strain (8X) and the variant with a 12-bp deletion in the E gene (F8). In total, 3,966 differentially expressed genes (DEGs) and 110 differentially expressed lncRNA (DE-lncRNA) candidates were identified. Of these, 94 DEGs and 32 DE-lncRNAs were found between samples infected with F8 and 8X. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyzes revealed that pathways such as the TNF signaling pathway and viral protein interaction with cytokine and cytokine receptor were involved. Furthermore, we constructed a lncRNA-protein-coding gene co-expression interaction network. The KEGG analysis of the co-expressed genes showed that these differentially expressed lncRNAs were enriched in pathways related to the immune response, which might explain the different replication and immunogenicity properties of the 8X and F8 strains. These results provide a useful resource for studying the pathogenesis of SARS-CoV-2 variants.

14.
Materials (Basel) ; 14(24)2021 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-34947219

RESUMEN

A series of Al2O3-Al2TiO5 ceramic composites with different Al2TiO5 contents (10 and 40 vol.%) fabricated at different sintering temperatures (1450 and 1550 °C) was studied in the present work. The microstructure, crystallite structure, and through-thickness residual stress of these composites were investigated by scanning electron microscopy, X-ray diffraction, time-of-flight neutron diffraction, and Rietveld analysis. Lattice parameter variations and individual peak shifts were analyzed to calculate the mean phase stresses in the Al2O3 matrix and Al2TiO5 particulates as well as the peak-specific residual stresses for different hkl reflections of each phase. The results showed that the microstructure of the composites was affected by the Al2TiO5 content and sintering temperature. Moreover, as the Al2TiO5 grain size increased, microcracking occurred, resulting in decreased flexure strength. The sintering temperatures at 1450 and 1550 °C ensured the complete formation of Al2TiO5 during the reaction sintering and the subsequent cooling of Al2O3-Al2TiO5 composites. Some decomposition of AT occurred at the sintering temperature of 1550 °C. The mean phase residual stresses in Al2TiO5 particulates are tensile, and those in the Al2O3 matrix are compressive, with virtually flat through-thickness residual stress profiles in bulk samples. Owing to the thermal expansion anisotropy in the individual phase, the sign and magnitude of peak-specific residual stress values highly depend on individual hkl reflection. Both mean phase and peak-specific residual stresses were found to be dependent on the Al2TiO5 content and sintering temperature of Al2O3-Al2TiO5 composites, since the different developed microstructures can produce stress-relief microcracks. The present work is beneficial for developing Al2O3-Al2TiO5 composites with controlled microstructure and residual stress, which are crucial for achieving the desired thermal and mechanical properties.

15.
Viruses ; 13(10)2021 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-34696367

RESUMEN

The novel coronavirus pneumonia (COVID-19) pandemic is a great threat to human society and now is still spreading. Although several vaccines have been authorized for emergency use, only one recombinant subunit vaccine has been permitted for widespread use. More subunit vaccines for COVID-19 should be developed in the future. The receptor binding domain (RBD), located at the S protein of SARS-CoV-2, contains most of the neutralizing epitopes. However, the immunogenicity of RBD monomers is not strong enough. In this study, we fused the RBD-monomer with a modified Fc fragment of human IgG1 to form an RBD-Fc fusion protein. The recombinant vaccine candidate based on the RBD-Fc protein could induce high levels of IgG and neutralizing antibody in mice, and these could last for at least three months. The secretion of IFN-γ, IL-2 and IL-10 in the RBD-stimulated splenocytes of immunized mice also increased significantly. Our results first showed that the RBD-Fc vaccine could induce both humoral and cellular immune responses and might be an optional strategy to control COVID-19.


Asunto(s)
Vacunas contra la COVID-19/inmunología , SARS-CoV-2/inmunología , Vacunas de Subunidad/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , Epítopos/inmunología , Femenino , Humanos , Fragmentos Fc de Inmunoglobulinas/inmunología , Ratones , Ratones Endogámicos BALB C , Unión Proteica/inmunología , Dominios Proteicos/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunas Sintéticas/inmunología , Vacunas Sintéticas/uso terapéutico , Vacunas Virales/inmunología
16.
Materials (Basel) ; 14(12)2021 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-34203068

RESUMEN

Fe and Cr are regarded as two of the most important friction components in Cu-based composites (Cu-BCs). In this study, the microstructural detection and micro- and macro-tribology evaluation of Cu-BCs containing Fe and Cr were performed. The results indicated that both Fe and Cr formed diffusion interfaces with the copper matrix. Because of the generation of a defect interface layer, the Cr/Cu interface exhibited a low bonding strength. Owing to the excellent binding interface between Fe and Cu, the high coefficient of friction (COF) of Fe, and the formation of a mechanical mixing layer promoted by Fe, the Cu-BCs containing Fe presented better friction performance under all braking energy per unit area (BEPUA) values. The main wear mechanism of Cu-BCs containing Fe and Cr changed from abrasion to delamination with an increase in BEPUA, and the delamination of Cu-BCs containing Fe was induced by breaks in the mechanical mixed layer (MML).

17.
Opt Express ; 29(3): 3309-3326, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33770932

RESUMEN

The directional polarimetric camera (DPC) is a polarization sensor with the characteristics of ultra-wide-angle and low-distortion imaging. The multi-angle polarization information is helpful to obtain the spatial distribution of target radiation, and multiple data fusion relies on the non-uniformity calibration of image plane. The non-uniformity consists of many factors such as lens, detector assembly, spatial stray light, etc. The single correction method can not distinguish the error source effectively. In consideration of the in-flight operation mode of DPC based on the adjustment of exposure time, the non-uniformity correction method of the detector based on multi parameters is proposed. Through the electro-optical performance measurement system of the CCD detector, the sensitive factors such as temperature, dark current, exposure time and spectral response are obtained. After a series of preprocessing of the image including removal of dark signal, removal of smearing effect and temperature compensation, the non-uniformity calibration based on multi-parameters is imposed on the detector. The low-frequency unbalanced response difference of the image surface is eliminated, and the high-frequency difference is effectively suppressed. The experimental results show that the photo response non-uniformity of 95% full well single frame data is reduced from 2.86% to 0.36%. After correction, the data noise is shown as shot noise, and the detector has good ability of dynamic range adjustment. The non-uniformity calibration by the proposed method can offer data support for the instrumental calibration and in-flight fast calculation, and provide effective reference for the subsequent polarization remote sensing instruments.

18.
Front Microbiol ; 12: 801196, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35140696

RESUMEN

Neisseria meningitidis (Nm) remains a worldwide leading cause of epidemic meningitis. During 2011-July 2021, 55 meningococcal disease (MD) cases were reported with a case fatality rate of 5.45% in Zhejiang Province, China. The median age was 7 years. The annual incidence was 0.0017-0.0183 per 100,000 population. The highest age-specific incidence was observed in the group younger than 1 year. Serogroup was identified in 30 laboratory-confirmed MD cases, and MenB was most predominant. MenB was mainly observed in two age groups: younger than 5 and older than 35 years. MenB incidence was significantly increasing from 0.0018 per 100,000 in 2013 to 0.0070 per 100,000 in 2019. During 2015-2020, 17 positive samples were detected from 2,827 throat swabs from healthy population, of which 70.59% was MenB. Twenty multilocus sequence typing sequence types (STs) containing eight newly assigned STs (ST15881-ST15888) were determined in all Nm isolates. Either in MD cases or in healthy population, MenB CC ST-4821 was the predominant ST. It was worth noting that two MenY CC ST-23 cases occurred in 2019 and 2021, respectively. MenY CC ST-23 MD cases increased gradually in China. Phylogeny results based on genome sequencing indicated that Chinese MenW CC ST-11 isolates were genetically linked and grouped together with Japanese isolates, separated from MenW CC ST-11 isolates from Saudi Arabia Hajj outbreak, Europe, South Africa, South America, North America, and Oceania. MenW CC ST-11 isolates from East Asia might have evolved locally. Antibiotic susceptibility tests revealed a relatively high resistance rate (22.86%) of Nm isolates to penicillin. This study provided valuable data for Chinese public health authorities to grasp the temporal epidemiological characteristics of MD and healthy carriage.

19.
Emerg Microbes Infect ; 9(1): 2361-2367, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33118859

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic is still ongoing and has become an important public health threat. This disease is caused by a new coronavirus named severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection, and so far, little is known about this virus. In this study, by using plaque purification, we purified two SARS-CoV-2 virus strains from the same specimen, one named F8 containing a 12-bp deletion in the E gene and the other named 8X containing the wild-type E gene. There was no significant difference in the viral titer and infectivity of these two strains. The S protein content of the F8 viral culture was 0.39 µg/ml, much higher than that of 8X. An inactivated vaccine made from the F8 strain could trigger high levels of the IgG titer and neutralizing antibody titer, which could last for at least 6 weeks and were significantly higher than those from the 8X strain at 1 and 3 weeks post vaccination, respectively. In conclusion, we reported that both the E gene mutant and wild-type SARS-CoV-2 strains were isolated from the same clinical sample by plaque purification. A 12-bp deletion in the E gene was important for SARS-CoV-2 replication and immunogenicity.


Asunto(s)
Betacoronavirus/genética , Infecciones por Coronavirus/virología , Neumonía Viral/virología , Proteínas del Envoltorio Viral/genética , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Betacoronavirus/inmunología , Betacoronavirus/patogenicidad , COVID-19 , Proteínas de la Envoltura de Coronavirus , Infecciones por Coronavirus/epidemiología , Femenino , Humanos , Inmunización , Masculino , Ratones , Ratones Endogámicos BALB C , Pandemias , Neumonía Viral/epidemiología , SARS-CoV-2 , Eliminación de Secuencia , Glicoproteína de la Espiga del Coronavirus/administración & dosificación , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Proteínas del Envoltorio Viral/administración & dosificación , Proteínas del Envoltorio Viral/inmunología , Virulencia
20.
Virus Res ; 286: 198067, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32553610

RESUMEN

The morbidity and mortality of coxsackievirus A10 (CVA10)-associated hand, foot, and mouth disease (HFMD) have been increasing in recent years, while few studies on the vaccine and animal model of CVA10 have been reported. Here, we first established a CVA10-infected gerbil model and employed it to evaluate the immunoprotective effect of an inactivated CVA10 vaccine. The results showed that gerbils up to the age of 14 days were fully susceptible to CVA10, and all died within five days post-infection by intraperitoneal inoculation. Lethargy, wasting, hind-limb paralysis, and even death could be observed in the CVA10-infected gerbils. Pathological examination suggested that CVA10 has a strong tropism toward muscle tissue, and muscle bundle fracture and muscular fibers necrosis were observed in the limb muscles. Additionally, active immunization results showed that gerbils immunized with the inactivated CVA10 vaccine were 100 % protected from lethal CVA10 challenge. The antisera from vaccinated gerbils also showed high neutralizing titers against CVA10. Based on these results, the CVA10-infected gerbil model was a suitable tool for analyzing the pathogenesis of CVA10 and assessing the protective efficacy of CVA10 candidate vaccines.


Asunto(s)
Infecciones por Coxsackievirus/prevención & control , Infecciones por Coxsackievirus/veterinaria , Modelos Animales de Enfermedad , Enterovirus/patogenicidad , Gerbillinae , Músculos/patología , Músculos/virología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Infecciones por Coxsackievirus/inmunología , Enterovirus/clasificación , Vacunación , Potencia de la Vacuna , Vacunas de Productos Inactivados/inmunología , Tropismo Viral , Vacunas Virales/administración & dosificación , Vacunas Virales/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA