Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Neurol Res ; : 1-12, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38979727

RESUMEN

OBJECTIVES: This study aims to investigate the role of high-intensity interval training (HIIT) in promoting myelin sheath recovery during the remyelination phase in cuprizone (CPZ)-induced demyelination mice and elucidate the mechanisms involving the Wnt/ß-catenin pathway. METHODS: After 5 weeks of a 0.2% CPZ diet to induce demyelination, a 4-week recovery phase with a normal diet was followed by HIIT intervention. Mice body weight was monitored. Morris water maze (MWM) gauged spatial cognition and memory, while the open field test (OFT) assessed anxiety levels. Luxol fast blue (LFB) staining measured demyelination, and immunofluorescence examined myelin basic protein (MBP) and platelet-derived growth factor receptor-alpha (PDGFR-α). Western blotting analyzed protein expression, including MBP, PDGFR-α, glycogen synthase kinase-3ß (GSK3ß), ß-catenin, and p-ß-catenin. Real-time PCR detected mRNA expression levels of CGT and CST. RESULTS: HIIT promoted remyelination in demyelinating mice, enhancing spatial cognition, memory, and reducing anxiety. LFB staining indicated decreased demyelination in HIIT-treated mice. Immunofluorescence demonstrated increased MBP fluorescence intensity and PDGFR-α+ cell numbers with HIIT. Western blotting revealed HIIT reduced ß-catenin levels while increasing p-ß-catenin and GSK3ß levels. Real-time PCR demonstrated that HIIT promoted the generation of new myelin sheaths. Additionally, the Wnt/ß-catenin pathway agonist, SKL2001, decreased MBP expression but increased PDGFR-α expression. DISCUSSION: HIIT promotes remyelination by inhibiting the Wnt/ß-catenin pathway and is a promising rehabilitation training for demyelinating diseases. It provides a new theoretical basis for clinical rehabilitation and care programs.

2.
Mol Carcinog ; 63(8): 1572-1587, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38780170

RESUMEN

Clear cell renal cell carcinoma (ccRCC), the most common subtype of renal cell carcinoma, often leads to a poor prognosis due to metastasis. The investigation of N6-methyladenosine (m6A) methylation, a crucial RNA modification, and its role in ccRCC, particularly through the m6A reader insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2), revealed significant insights. We found that IGF2BP2 was notably downregulated in ccRCC, which correlated with tumor aggressiveness and poor prognosis. Thus, IGFBP2 has emerged as an independent prognostic factor of ccRCC. Moreover, a strong positive correlation was observed between the expression of IGF2BP2 and Netrin-4. Netrin-4 was also downregulated in ccRCC, and its lower levels were associated with increased malignancy and poor prognosis. Overexpression of IGF2BP2 and Netrin-4 suppressed the invasion and migration of ccRCC cells, while Netrin-4 knockdown reversed these effects in ccRCC cell lines. RNA immunoprecipitation (RIP)-quantitative polymerase chain reaction validated the robust enrichment of Netrin-4 mRNA in anti-IGF2BP2 antibody immunoprecipitates. MeRlP showed significantly increased Netrin4 m6A levels after lGF2BP2 overexpression. Moreover, we found that IGF2BP2 recognized and bound to the m6A site within the coding sequence of Netrin-4, enhancing its mRNA stability. Collectively, these results showed that IGF2BP2 plays a suppressive role in the invasion and migration of ccRCC cells by targeting Netrin-4 in an m6A-dependent manner. These findings underscore the potential of IGF2BP2/Netrin-4 as a promising prognostic biomarker and therapeutic target in patients with ccRCC metastasis.


Asunto(s)
Carcinoma de Células Renales , Movimiento Celular , Regulación Neoplásica de la Expresión Génica , Neoplasias Renales , Invasividad Neoplásica , Netrinas , Proteínas de Unión al ARN , Humanos , Netrinas/genética , Netrinas/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/genética , Neoplasias Renales/patología , Neoplasias Renales/metabolismo , Neoplasias Renales/genética , Pronóstico , Línea Celular Tumoral , Masculino , Adenosina/análogos & derivados , Adenosina/metabolismo , Femenino , Proliferación Celular , Persona de Mediana Edad , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo
3.
Biochem Mol Biol Educ ; 52(3): 323-331, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38308542

RESUMEN

The primary objective of science postgraduate education is to foster students' capacity for creative thinking and problem-solving, particularly in the context of scientific research quality. In order to achieve this goal, the "7E" teaching mood has been implemented in the cell biology course for postgraduate students to promote student-centered active inquiry learning instead of breaking away from traditional indoctrination-based teaching methods. This study demonstrates that the implementation of the "7E" teaching mode, through content programming, process design, and effect evaluation, effectively meets the needs of the majority of students, fosters their interest in learning, enhances their performance in comprehensive questioning, and enhances their innovative abilities in scientific research. Consequently, this research offers a theoretical framework and practical foundation for the development of the "7E" teaching mode in postgraduate courses, aiming to cultivate highly skilled scientific professionals.


Asunto(s)
Biología Celular , Aprendizaje Basado en Problemas , Estudiantes , Humanos , Estudiantes/psicología , Aprendizaje Basado en Problemas/métodos , Biología Celular/educación , Enseñanza , Curriculum , Educación de Postgrado/métodos , Aprendizaje
4.
Phytomedicine ; 124: 155280, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38183697

RESUMEN

BACKGROUND: Polycystic ovary syndrome (PCOS) is the most common reproductive-endocrine condition in premenopausal women. Troxerutin, a common clinical anti-coagulant agent, was shown to work as a strong IL-22 boosting agent counteracting the hyperactivated gonadotrophin releasing hormone (GnRH) neurons and heightened GnRH release, the neuroendocrine origin of PCOS with unknown mechanism in rats. Exploring the off-label use of troxerutin medication for PCOS is thus sorely needed. METHODS: Serum IL-22 content and hypothalamic IL-22 protein were detected. Inflammatory factor levels in hypothalamo-pituitary were evaluated. Immunofluorescence staining was employed to determine the activation and M1/M2-prone polarization of microglia in arcuate hypothalamus and median eminence. RNA-sequencing and transcriptome analysis were applied to explore the potential driver of microglia M2-polarization in response to IL-22 bolstering effect. The function of microglial IL-22/IL-22R1/IRF3 system was further verified using in vivo knockdown of IL-22R1 and a potent IRF3 inhibitor in BV2 microglial cell lines in vitro. RESULTS: Troxerutin augmented serum IL-22 content, and its consequent spillover into the hypothalamus led to the direct activation of IL-22R1/IRF3 system on microglia, thereby promoted microglia M2 polarization in arcuate hypothalamus and median eminence, dampened hypothalamic neuroinflammation, inhibited hyperactive GnRH and rescued a breadth of PCOS-like traits in dihydrotestosterone (DHT) rats. The salutary effects of troxerutin treatment on hypothalamic neuroinflammation, microglial M1/2 polarization, GnRH secretion and numerous PCOS-like features were blocked by in vivo knockdown of IL-22R1. Moreover, evidence in vitro illustrated that IL-22 supplement to BV-2 microglia cell lines promoted M2 polarization, overproduction of anti-inflammatory marker and limitation of pro-inflammatory factors, whereas these IL-22 effects were blunted by geldanamycin, a potent IRF3 inhibitor. CONCLUSION: Here, the present study reported the potential off-label use of troxerutin medication, a common clinical anti-coagulant agent and an endogenous IL-22 enhancer, for multiple purposes in PCOS. The rational underlying the application of troxerutin as a therapeutic choice in PCOS derived from its activity as an IL-22 memetic agent targeting the neuro-endocrine origin of PCOS, and its promotive impact on microglia M2 polarization via activating microglial IL-22R1/IRF3 system in the arcuate hypothalamus and median eminence of DHT female rats.


Asunto(s)
Hidroxietilrutósido/análogos & derivados , Síndrome del Ovario Poliquístico , Receptores de Interleucina , Humanos , Ratas , Femenino , Animales , Síndrome del Ovario Poliquístico/inducido químicamente , Síndrome del Ovario Poliquístico/tratamiento farmacológico , Dihidrotestosterona/efectos adversos , Dihidrotestosterona/metabolismo , Microglía , Enfermedades Neuroinflamatorias , Interleucina-22 , Hipotálamo/metabolismo , Hormona Liberadora de Gonadotropina/efectos adversos , Hormona Liberadora de Gonadotropina/metabolismo , Factor 3 Regulador del Interferón/metabolismo
5.
J Chem Neuroanat ; 136: 102375, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38123002

RESUMEN

Demyelinating diseases are a type of neurological disorder characterized by the damage to the myelin sheath in the central nervous system. Promoting the proliferation and differentiation of oligodendrocyte precursor cells (OPCs) is crucial for treatment. Non-selective muscarinic receptor (MR) antagonists have been shown to improve remyelination in rodent models, although the mechanisms are still unclear. In this study, we treated cuprizone (CPZ)-induced demyelination mouse model with different concentrations of Solifenacin (Sol), a selective M3 receptor antagonist, to determine the optimal concentration for promoting remyelination. Behavioral tests and Luxol fast blue (LFB) staining were used to observe the extent of remyelination, while immunofluorescence was used to measure the expression levels of myelin-related proteins, including myelin basic protein (MBP) and platelet-derived growth factor receptor alpha (PDGFR-α). Western blot analysis was employed to analyze the expression levels of molecules associated with the Wnt/ß-catenin signaling pathway. The results showed that Sol treatment significantly promoted myelin regeneration and OPCs differentiation in CPZ-induced demyelination mouse model. Additionally, Sol treatment inhibited the Wnt/ß-catenin signaling pathway and reversed the effects of CPZ on OPCs differentiation. In conclusion, Sol may promote the differentiation of OPCs by inhibiting the Wnt/ß-catenin signaling pathway, making it a potential therapeutic option for central nervous system demyelinating diseases.


Asunto(s)
Enfermedades Desmielinizantes , Remielinización , Ratones , Animales , Cuprizona/toxicidad , Succinato de Solifenacina/efectos adversos , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/tratamiento farmacológico , Enfermedades Desmielinizantes/metabolismo , Vía de Señalización Wnt , Oligodendroglía , Diferenciación Celular , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
6.
J Neurochem ; 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38115597

RESUMEN

Diosgenin, a natural steroid saponin, holds promise as a multitarget therapeutic for various diseases, including neurodegenerative conditions. Its efficacy in slowing Alzheimer's disease, Parkinson's disease, multiple sclerosis, and stroke progression has been demonstrated. However, the role of diosgenin in anti-epilepsy and its potential connection to the modulation of the intestinal microbiota remain poorly understood. In this study, exogenous diosgenin significantly mitigated pentylenetetrazole (PTZ)-induced seizures, learning and memory deficits, and hippocampal neuronal injury. 16S ribosomal RNA (16S rRNA) sequencing revealed a reversal in the decrease of Bacteroides and Parabacteroides genera in the PTZ-induced mouse epileptic model following diosgenin treatment. Fecal microbiota transplantation (FMT) experiments illustrated the involvement of diosgenin in modulating gut microbiota and providing neuroprotection against epilepsy. Our results further indicated the repression of enteric glial cells (EGCs) activation and the TLR4-MyD88 pathway, coupled with reduced production of inflammatory cytokines in the colonic lumen, and improved intestinal barrier function in epilepsy mice treated with diosgenin or FMT. This study suggests that diosgenin plays a role in modifying gut microbiota, contributing to the alleviation of intestinal inflammation and neuroinflammation, ultimately inhibiting epilepsy progression in a PTZ-induced mouse model. Diosgenin emerges as a potential therapeutic option for managing epilepsy and its associated comorbidities.

7.
iScience ; 26(5): 106647, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37168574

RESUMEN

Immune rejection can be reduced using immunosuppressants which are not viable for premature infants. However, desensitization can induce immune tolerance for premature infants because of underdeveloped immune system. The fetuses of Wistar rats at 15-17 days gestation were injected via hOPCs-1 into brain, muscles, and abdomen ex utero and then returned while the fetuses of control without injection. After 6 weeks of desensitization, the brain and muscles were transplanted with hOPCs-1, hNSCs-1, and hOPCs-2. After 10 and 34 weeks of desensitization, hOPCs-1 and hNSCs-1 in desensitized groups was higher than that in the control group while hOPCs-2 were rejected. Treg, CD4CD28, CD8CD28, and CD45RC between the desensitization and the control group differed significantly. Inflammatory cells in group with hOPCs-1 and hNSCs-1 was lower than that in the control group. hOPCs-1 can differentiate into myelin in desensitized groups. Wistar rats with desensitization developed immune tolerance to desensitized and transplanted cells.

8.
Biomed Pharmacother ; 163: 114815, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37146420

RESUMEN

Preterm white matter injury (PWMI), characterized by oligodendrocyte precursor cell (OPC) differentiation disorder and dysmyelination, is a prevalent demyelinating disease of the central nervous system in premature infants, necessitating the development of mitigating strategies. Convincing evidence suggests that peroxisome proliferator-activated receptor γ (PPARγ) activation is a stimulative factor against the hindered process of oligodendrocyte (OL) differentiation. However, much remains unknown about its promotive mechanism. Our previous study indicated that alpha-asaronol (α-asaronol) could alleviate myelination disorder in a neonatal PWMI rat model, but the mechanism remained unclear. In this study, we demonstrated that α-asaronol attenuated cognitive deficits, repaired myelin damage, and stimulated OL differentiation in the corpus callosum of PWMI rats. Co-immunoprecipitation analysis confirmed that α-asaronol induced the binding of PPARγ with its coactivator peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), which in turn activated oligodendroglial PPARγ. This activation subsequently upregulated the expression of phosphatase and tensin homolog (PTEN) and pro-differentiation-associated genes of Cnp1 and Klk6 and downregulated the expression of Clk1. However, the benefits of α-asaronol were blocked by GW9662, an antagonist of PPARγ. Moreover, α-asaronol also promoted OPC differentiation under oxygen-glucose deprivation conditions. In conclusion, α-asaronol can promote OL differentiation and myelination and alleviate cognitive deficits in neonatal PWMI rats by activating PPARγ and modulating OL differentiation-associated gene expression. This study suggests that α-asaronol may be a potential therapeutic drug for myelination failure in PWMI.


Asunto(s)
Células Precursoras de Oligodendrocitos , PPAR gamma , Ratas , Animales , PPAR gamma/metabolismo , Diferenciación Celular/fisiología , Oligodendroglía/metabolismo
9.
Behav Brain Res ; 448: 114444, 2023 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-37098387

RESUMEN

Oxidative stress is crucial in cerebral white matter lesions (WMLs) induced by chronic cerebral hypoperfusion. Therefore, ameliorating oxidative damage is considered to be a beneficial strategy for the treatment of WMLs. Ebselen (EbSe), a small lipid organoselenium compound, its lipid peroxidation activity is mediated through the glutathione peroxidase-mimetic properties. This study aimed to investigate the role of EbSe in WMLs after bilateral common carotid artery stenosis (BCAS). The BCAS model can moderately reduce cerebral blood flow, and mimics white matter damage caused by chronic cerebral hypoperfusion or small vessel disease. Laser Speckle Contrast Imaging (LSCI) was used to monitor the cerebral blood flow of mice. The spatial learning and memory were tested by using the eight-arm maze. LFB staining was used to detect demyelination. The expression of MBP, GFAP and Iba1 was assayed by immunofluorescence. The demyelination was assessed by Transmission Electron Microscope (TEM). The activities of MDA, SOD and GSH-Px were detected by assay kits. The mRNA levels of SOD, GSH-Px and HO-1 was detected by realtime PCR. The activation of the Nrf2/ARE pathway and the expression of SOD, GSH-Px and HO-1was assessed by Western blot. EbSe ameliorated cognitive deficits and white matter lesions induced by bilateral common carotid artery stenosis (BCAS). The expression of GFAP and Iba1 was decreased in the corpus callosum of BCAS mice after EbSe treatment. Moreover, EbSe alleviated the level of MDA by elevating the expression and mRNA of SOD, GSH-Px and HO-1 in BCAS mice. Furthermore, EbSe promoted the dissociation of the Keap1/Nrf2 complex, resulting in the accumulation of Nrf2 in the nucleus. This study demonstrates a favorable effect of EbSe on cognitive impairment in a chronic cerebral hypoperfusion model, and the improvement of EbSe's antioxidant property is mediated by Keap1/Nrf2 pathway.


Asunto(s)
Isquemia Encefálica , Estenosis Carotídea , Disfunción Cognitiva , Enfermedades Desmielinizantes , Sustancia Blanca , Animales , Ratones , Factor 2 Relacionado con NF-E2/metabolismo , Sustancia Blanca/patología , Estenosis Carotídea/complicaciones , Estenosis Carotídea/tratamiento farmacológico , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/etiología , Disfunción Cognitiva/metabolismo , Isquemia Encefálica/patología , Estrés Oxidativo , Cognición , Enfermedades Desmielinizantes/metabolismo , Superóxido Dismutasa/metabolismo
10.
Neural Regen Res ; 18(3): 603-608, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36018184

RESUMEN

ß2-Microglobulin (ß2M), a component of the major histocompatibility complex class I molecule, is associated with aging-related cognitive impairment and Alzheimer's disease. Although upregulation of ß2M is considered to be highly related to ischemic stroke, the specific role and underlying mechanistic action of ß2M are poorly understood. In this study, we established a rat model of focal cerebral ischemia by occlusion of the middle cerebral artery. We found that ß2M levels in the cerebral spinal fluid, serum, and brain tissue were significantly increased in the acute period but gradually decreased during the recovery period. RNA interference was used to inhibit ß2M expression in the acute period of cerebral stroke. Tissue staining with 2,3,5-triphenyltetrazolium chloride and evaluation of cognitive function using the Morris water maze test demonstrated that decreased ß2M expression in the ischemic penumbra reduced infarct volume and alleviated cognitive deficits, respectively. Notably, glial cell, caspase-1 (p20), and Nod-like receptor pyrin domain containing 3 (NLRP3) inflammasome activation as well as production of the inflammatory cytokines interleukin-1ß, interleukin-6, and tumor necrosis factor-α were also effectively inhibited by ß2M silencing. These findings suggest that ß2M participates in brain injury and cognitive impairment in a rat model of ischemic stroke through activation of neuroinflammation associated with the NLRP3 inflammasome.

11.
Cell Mol Neurobiol ; 43(5): 1663-1683, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36350538

RESUMEN

Netrin-4, a member of the Netrins family, is an important secreted protein that plays a role in axonal outgrowth and migration orientation. It was initially described that Netrin-4 had a high correlation with the laminin ß-chain and promoted the growth of neurites in cultured olfactory bulb explants. Subsequently, it was discovered that Netrin-4 is involved in regulating various physiological processes, including angiogenesis, the occurrence and metastasis of various tumors, and the development of the kidney and alveoli. This paper reviews the current research on Netrin-4 since its discovery and provides a theoretical basis for further research on the biological characteristics of Netrin-4. Effects of Netrin-4. Netrin-4 regulates axon guidance, angiogenesis and the development of various tumors.


Asunto(s)
Neoplasias , Receptores de Superficie Celular , Humanos , Receptores de Superficie Celular/metabolismo , Factores de Crecimiento Nervioso/farmacología , Factores de Crecimiento Nervioso/metabolismo , Orientación del Axón , Proteínas Supresoras de Tumor/metabolismo , Netrinas , Axones/metabolismo
12.
Am J Physiol Endocrinol Metab ; 323(5): E405-E417, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36103628

RESUMEN

Polycystic ovary syndrome (PCOS) is an extremely common endocrine-metabolic disorder and the main cause of infertility in premenopausal women, thus targeted treatments are sorely needed. Accumulative evidence showed that exogenous supplementation of IL-22 in PCOS mice may be of significant positive effect on insulin resistance (IR), a root causative factor for this condition, but much remained unknown about its mechanism. According to our previous study, troxerutin, a common anticoagulant and thrombolytic agent in clinic, alleviated various PCOS-like phenotypes in dihydrotestosterone (DHT)-treated rat model with unclear mechanism. Here, glucose tolerance tests (GTTs), insulin tolerance tests (ITTs), and homeostatic model assessment of insulin resistance (HOMA-IR) analyses revealed that troxerutin treatment in DHT-treated rats also significantly improved insulin resistance and enhanced serum IL-22 levels, which thereby activated IL-22R1/Janus kinase 1 (JAK1)/signal transducer and activator of transcription-3 (STAT3) signaling pathway in pancreatic islet. This protective effect of troxerutin on insulin resistance improvement was blocked by an inhibitor of p-STAT3, S3I-201. Troxerutin administration to DHT rats decreased the relative abundance of Bifidobacterium and enhanced secondary bile acid profiles, which were positively correlated with serum IL-22 concentration. Conclusively, the present study reported that troxerutin is an endogenous enhancer of IL-22 and the effect of troxerutin on insulin resistance improvement was via IL-22R1/JAK1/STAT3 signaling activation in a DHT-induced PCOS rat model. These insights may be translated into a primary therapeutic agent for PCOS with insulin resistance and hyperandrogenism.NEW & NOTEWORTHY Troxerutin decreased the relative abundance of Bifidobacterium, along with enhancement of secondary bile acids/IL-22 system, which thereby activated its downstream IL-22R1/JAK1/STAT3 signaling pathway in pancreatic ß cells, subsequently attenuated insulin resistance (IR), hyperandrogenism and PCOS-like phenotypes in DHT-induced PCOS rat models. Troxerutin is an endogenous IL-22 enhancer and may be of therapeutic value for PCOS with insulin resistance.


Asunto(s)
Hiperandrogenismo , Resistencia a la Insulina , Síndrome del Ovario Poliquístico , Animales , Femenino , Humanos , Ratones , Ratas , Anticoagulantes , Ácidos y Sales Biliares/farmacología , Dihidrotestosterona/farmacología , Fibrinolíticos , Insulina/metabolismo , Resistencia a la Insulina/fisiología , Janus Quinasa 1/metabolismo , Janus Quinasa 1/farmacología , Síndrome del Ovario Poliquístico/inducido químicamente , Síndrome del Ovario Poliquístico/tratamiento farmacológico , Transducción de Señal , Factor de Transcripción STAT3/metabolismo , Interleucina-22
13.
Cell Biochem Biophys ; 80(4): 723-735, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35994220

RESUMEN

Malignant glioma, especially glioblastoma (GBM), has historically been associated with a low survival rate. The hyperactivation of STAT3 played a key role in GBM initiation and resistance to therapy; thus, there is an urgent requirement for novel STAT3 inhibitors. BP-1-102 was recently reported as a biochemical inhibitor of STAT3, but its roles and mechanism in biological behavior of glioma cells were still unclear. In this study, the effects of BP-1-102 on proliferation, apoptosis, invasion and neurosphere formation of glioma cell were investigated. Our results indicated that BP-1-102 inhibited the proliferation of U251 and A172 cells, and their IC50 values were 10.51 and 8.534 µM, respectively. Furthermore, BP-1-102 inhibited the invasion and migration abilities of U251 and A172 cells by decreasing the expression of matrix metallopeptidase 9, and induced glioma cell apoptosis by decreasing the expression of B-cell lymphoma-2. BP-1-102 also inhibited the formation of neurosphere. Mechanically, BP-1-102 reduced the phosphorylation of STAT3 and the p-STAT3's nuclear translocation in glioma cells. Thus, this study herein provided a potential drug for glioma therapy.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Ácidos Aminosalicílicos , Apoptosis , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Glioma/metabolismo , Humanos , Metaloproteasas/metabolismo , Metaloproteasas/farmacología , Invasividad Neoplásica/prevención & control , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Factor de Transcripción STAT3/metabolismo , Sulfonamidas
15.
Front Immunol ; 13: 838389, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35464426

RESUMEN

Considering the role of GluR3B antibody-mediated excitotoxicity in the progression of epilepsy, the purpose of this study was to evaluate the clinical significance of GluR3B antibody level as a novel biomarker for the prognosis of unknown etiology drug-resistant epilepsy (DRE) in patients with focal to bilateral tonic-clonic seizures. The study included 193 patients with focal to bilateral tonic-clonic seizures in the modeling cohort. Serum and CSF samples from patients were collected, and GluR3B antibody levels were detected by an ELISA kit. Serum and CSF GluR3B antibody levels in patients with DRE were significantly increased compared with those in patients with drug-responsive epilepsy. Univariate logistic regression analysis underlined that patients with high GluR3B antibody levels had a significantly increased risk of developing DRE. A logistic regression model demonstrated that increased GluR3B antibody levels were an independent factor in predicting DRE. External verification showed that the model constructed for the prediction of DRE had good adaptability. Finally, decision curve analysis highlighted the superior clinical net benefit in DRE prognosis by GluR3B antibody level. In summary, elevated levels of GluR3B antibody are an early biomarker to predict the prognosis of DRE; in addition, targeting GluR3B antibody may be a promising treatment strategy for patients with DRE.


Asunto(s)
Epilepsia Refractaria , Epilepsia , Anticuerpos/uso terapéutico , Biomarcadores , Epilepsia Refractaria/diagnóstico , Humanos , Convulsiones/tratamiento farmacológico
16.
Front Pharmacol ; 13: 766744, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35401225

RESUMEN

Preterm white matter injury (PWMI) is the most common form of brain damage in premature infants caused by hypoxia-ischemia (HI), inflammation, or excitotoxicity. It is characterized by oligodendrocyte precursor cell (OPC) differentiation disorder and dysmyelination. Our previous study confirmed that alpha-asarone (α-asaronol), a major compound isolated from the Chinese medicinal herb Acorus gramineus by our lab, could alleviate neuronal overexcitation and improve the cognitive function of aged rats. In the present study, we investigated the effect and mechanism of α-asaronol on myelination in a rat model of PWMI induced by HI. Notably, α-asaronol promoted OPC differentiation and myelination in the corpus callosum of PWMI rats. Meanwhile, the concentration of glutamate was significantly decreased, and the levels of PPARγ and glutamate transporter 1 (GLT-1) were increased by α-asaronol treatment. In vitro, it was also confirmed that α-asaronol increased GLT-1 expression and recruitment of the PPARγ coactivator PCG-1a in astrocytes under oxygen and glucose deprivation (OGD) conditions. The PPARγ inhibitor GW9662 significantly reversed the effect of α-asaronol on GLT-1 expression and PCG-1a recruitment. Interestingly, the conditioned medium from α-asaronol-treated astrocytes decreased the number of OPCs and increased the number of mature oligodendrocytes. These results suggest that α-asaronol can promote OPC differentiation and relieve dysmyelination by regulating glutamate levels via astrocyte PPARγ-GLT-1 signaling. Although whether α-asaronol binds to PPARγ directly or indirectly is not investigated here, this study still indicates that α-asaronol may be a promising small molecular drug for the treatment of myelin-related diseases.

17.
Exp Neurol ; 348: 113947, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34902359

RESUMEN

Multiple sclerosis (MS) is a chronic central nervous system demyelinating disease of autoimmune originate. Complement C1q, a complex glycoprotein, mediates a variety of immunoregulatory functions considered important in the prevention of autoimmunity. Although we found that the increased serum C1q level was highly associated with the Fazekas scores and T2 lesion volume of MS patients, the effect and mechanism of C1q on demyelination remains unclear. Cluster analysis and protein array results showed that serum Wnt receptors Frizzled-6 and LRP-6 levels in MS patients were both increased, we proposed that C1q may be involved in demyelination via Wnt signaling. The increased C1q protein levels in the serum and brain tissue were confirmed in a cuprizone (CPZ)-induced demyelination mice model. Moreover, CPZ treatment induced significant increase of LRP-6 and Frizzled-6 protein in mice corpus callosum. LRP-6 extra-cellular domain (LRP-6-ECD) level in the serum and cerebrospinal fluid (CSF) of CPZ mice also significantly increased. Knockdown of the subunit C1s of C1 not only substantially attenuated demyelination, promoted M2 microglia polarization and improved neurological function, but inhibited ß-catenin expression and its nuclear translocation in oligodendrocyte progenitor cells (OPCs). In vitro, C1s silence reversed the increased level of LRP-6-ECD in the medium and ß-catenin expression in OPCs induced by C1q treatment. Meanwhile, inhibition of C1s also markedly lowered the number of EDU positive OPCs, but enhanced the number of CNPase positive oligodendrocyte and the protein of MBP. The present study indicated that C1q was involved in demyelination in response to CPZ in mice by preventing OPC from differentiating into mature oligodendrocyte via Wnt/ß-catenin signaling activation.


Asunto(s)
Diferenciación Celular/fisiología , Complemento C1q/metabolismo , Cuprizona/toxicidad , Esclerosis Múltiple Recurrente-Remitente/metabolismo , Células Precursoras de Oligodendrocitos/metabolismo , Vía de Señalización Wnt/fisiología , Adulto , Animales , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Quelantes/toxicidad , Complemento C1q/antagonistas & inhibidores , Complemento C1q/genética , Modelos Animales de Enfermedad , Femenino , Técnicas de Silenciamiento del Gen/métodos , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Esclerosis Múltiple Recurrente-Remitente/genética , Esclerosis Múltiple Recurrente-Remitente/patología , Ratas , Ratas Sprague-Dawley , Vía de Señalización Wnt/efectos de los fármacos
18.
Curr Med Sci ; 41(4): 746-756, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34403100

RESUMEN

The use of an antibiotic with immunomodulatory properties could be fascinating in treating multifactorial inflammatory conditions such as ulcerative colitis (UC). We report our investigations into the immunomodulatory properties of levornidazole, the S-enantiomer of ornidazole, which displayed a tremendous therapeutic potential in UC induced by dextran sodium sulfate (DSS). Levornidazole administration to DSS-colitic mice attenuated the intestinal inflammatory process, with an efficacy better than that shown by 5-amino salicylic acid. This was evidenced by decreased disease activity index, ameliorated macroscopic and microscopic colon damages, and reduced expression of inflammatory cytokines. Additionally, levornidazole displayed anti-inflammatory activity through Caveolin-1-dependent reducing IL-1ß and IL-18 secretion by macrophages contributing to its improvement of the intestinal inflammation, as confirmed in vitro and in vivo. In conclusion, these results pointed out that the immunomodulatory effects of levornidazole played a vital role in ameliorating the intestinal inflammatory process, which would be crucial for the translation of its use into clinical settings.


Asunto(s)
Colitis Ulcerosa/tratamiento farmacológico , Agentes Inmunomoduladores/farmacología , Macrófagos/efectos de los fármacos , Ornidazol/farmacocinética , Animales , Caveolina 1/genética , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/inmunología , Colitis Ulcerosa/patología , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/inmunología , Humanos , Interleucina-18/genética , Interleucina-1beta/genética , Macrófagos/inmunología , Ratones
19.
Stem Cell Res Ther ; 12(1): 462, 2021 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-34407865

RESUMEN

BACKGROUND: The dual inhibitors of receptor interacting protein kinase-1 and -3 (RIP1 and RIP3) play an important role in cell death processes and inflammatory responses. White matter injury (WMI), a leading cause of neurodevelopmental disabilities in preterm infants, which is characterized by extensive myelination disturbances and demyelination. Neuroinflammation, leads to the loss and differentiation-inhibition of oligodendrocyte precursor cells (OPCs), represents a major barrier to myelin repair. Whether the novel RIP1/RIP3 dual inhibitor ZJU-37 can promote transplanted OPCs derived from human neural stem cells (hOPCs) survival, differentiation and myelination remains unclear. In this study, we investigated the effect of ZJU-37 on myelination and neurobehavioral function in a neonatal rat WMI model induced by hypoxia and ischemia. METHODS: In vivo, P3 rat pups were subjected to right common carotid artery ligation and hypoxia, and then treated with ZJU-37 or/and hOPCs, then OPCs apoptosis, myelination, glial cell and NLRP3 inflammasome activation together with cognitive outcome were evaluated at 12 weeks after transplantation. In vitro, the effect of ZJU-37 on NLRP3 inflammasome activation in astrocytes induced by oxygen-glucose deprivation (OGD) were examined by western blot and immunofluorescence. The effect of ZJU-37 on OPCs apoptosis induced by the conditioned medium from OGD-injured astrocytes (OGD-astrocyte-CM) was analyzed by flow cytometry and immunofluorescence. RESULTS: ZJU-37 combined with hOPCs more effectively decreased OPC apoptosis, promoted myelination in the corpus callosum and improved behavioral function compared to ZJU-37 or hOPCs treatment. In addition, the activation of glial cells and NLRP3 inflammasome was reduced by ZJU-37 or/and hOPCs treatment in the neonatal rat WMI model. In vitro, it was also confirmed that ZJU-37 can suppress NLRP3 inflammasome activation in astrocytes induced by OGD. Not only that, the OGD-astrocyte-CM treated with ZJU-37 obviously attenuated OPC apoptosis and dysdifferentiation caused by the OGD-astrocyte-CM. CONCLUSIONS: The novel RIP1/RIP3 dual inhibitor ZJU-37 may promote OPC survival, differentiation and myelination by inhibiting NLRP3 inflammasome activation in a neonatal rat model of WMI with hOPC graft.


Asunto(s)
Lesiones Encefálicas , Sustancia Blanca , Animales , Astrocitos , Humanos , Recién Nacido , Recien Nacido Prematuro , Vaina de Mielina , Oligodendroglía , Ratas
20.
Cell Mol Immunol ; 18(9): 2177-2187, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34363030

RESUMEN

Circular RNAs (circRNAs) regulate gene expression and participate in various biological and pathological processes. However, little is known about the effects of specific circRNAs on T helper cell 17 (Th17) differentiation and related autoimmune diseases, such as multiple sclerosis (MS). Here, using transcriptome microarray analysis at different stages of experimental autoimmune encephalomyelitis (EAE), we identified the EAE progression-related circINPP4B, which showed upregulated expression in Th17 cells from mice with EAE and during Th17 differentiation in vitro. Silencing of circINPP4B inhibited Th17 differentiation and alleviated EAE, characterized by less demyelination and Th17 infiltration in the spinal cord. Mechanistically, circINPP4B served as a sponge that directly targeted miR-30a to regulate Th17 differentiation. Furthermore, circINPP4B levels were associated with the developing phases of clinical relapsing-remitting MS patients. Our results indicate that circINPP4B plays an important role in promoting Th17 differentiation and progression of EAE by targeting miR-30a, which provides a potential diagnostic and therapeutic target for Th17-mediated MS.


Asunto(s)
Encefalomielitis Autoinmune Experimental , MicroARNs , Animales , Diferenciación Celular , Encefalomielitis Autoinmune Experimental/genética , Humanos , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/metabolismo , ARN Circular/genética , Células Th17
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...