Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Plant Physiol ; 195(2): 1293-1311, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38428987

RESUMEN

In plants, pollen-pistil interactions during pollination and fertilization mediate pollen hydration and germination, pollen tube growth, and seed set and development. Cell wall invertases (CWINs) help provide the carbohydrates for pollen development; however, their roles in pollination and fertilization have not been well established. In cucumber (Cucumis sativus), CsCWIN3 showed the highest expression in flowers, and we further examined CsCWIN3 for functions during pollination to seed set. Both CsCWIN3 transcript and CsCWIN3 protein exhibited similar expression patterns in the sepals, petals, stamen filaments, anther tapetum, and pollen of male flowers, as well as in the stigma, style, transmitting tract, and ovule funiculus of female flowers. Notably, repression of CsCWIN3 in cucumber did not affect the formation of parthenocarpic fruit but resulted in an arrested growth of stigma integuments in female flowers and a partially delayed dehiscence of anthers with decreased pollen viability in male flowers. Consequently, the pollen tube grew poorly in the gynoecia after pollination. In addition, CsCWIN3-RNA interference plants also showed affected seed development. Considering that sugar transporters could function in cucumber fecundity, we highlight the role of CsCWIN3 and a potential close collaboration between CWIN and sugar transporters in these processes. Overall, we used molecular and physiological analyses to determine the CsCWIN3-mediated metabolism during pollen formation, pollen tube growth, and plant fecundity. CsCWIN3 has essential roles from pollination and fertilization to seed set but not parthenocarpic fruit development in cucumber.


Asunto(s)
Pared Celular , Cucumis sativus , Proteínas de Plantas , Polinización , Cucumis sativus/genética , Cucumis sativus/fisiología , Cucumis sativus/enzimología , Cucumis sativus/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Azúcares/metabolismo , beta-Fructofuranosidasa/metabolismo , beta-Fructofuranosidasa/genética , Polen/genética , Polen/crecimiento & desarrollo , Polen/fisiología , Flores/genética , Flores/fisiología , Flores/crecimiento & desarrollo , Fertilización , Tubo Polínico/crecimiento & desarrollo , Tubo Polínico/genética , Tubo Polínico/fisiología
2.
Chemosphere ; 338: 139473, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37451637

RESUMEN

In recent years, the coal gasification industry has rapidly developed, becoming one of the most promising technologies in the advanced and clean coal chemical industry. As a result, the annual emission of coal gasification fine slag (CGFS) has continuously increased. The present situation of CGFS is regarded as a notorious waste in gasification plants and is rudely landfilled or deposited in slag yards, which leads to a large waste of land resources, the release of dangerous elements, and numerous pollution problems. Although CGFS is classified as industrial solid waste, its unique physical and chemical properties make it a valuable resource that cannot be overlooked. This paper focuses on the resource utilization technology and environmental impact of CGFS. The resource utilization of different components of CGFS has realized the evolution from waste to valuable substances. Moreover, during the disposal and utilization of CGFS, its environmental effects cannot be ignored. The main problems and future research directions are also further proposed. Efforts should be focused on the challenges of the technology, cost, and environmental protection in the application process to achieve industrial application, and ultimately committed to sustainable and green development goals, and promote the sustainable management and conservation of resources.


Asunto(s)
Carbón Mineral , Metales Pesados , Carbón Mineral/análisis , Residuos Industriales , Conservación de los Recursos Naturales , Clima
3.
New Phytol ; 239(2): 639-659, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37129077

RESUMEN

Amino acid transporters are the principal mediators of organic nitrogen distribution within plants and are essential for plant growth and development. Despite this importance, relatively few amino acid transporter genes have been explored and elucidated in cucumber (Cucumis sativus). Here, a total of 86 amino acid transporter genes were identified in the cucumber genome. We further identified Amino Acid Permease (AAP) subfamily members that exhibited distinct expression patterns in different tissues. We found that the CsAAP2 as a candidate gene encoding a functional amino acid transporter is highly expressed in cucumber root vascular cells. CsAAP2 knockout lines exhibited arrested development of root meristem, which then caused the delayed initiation of lateral root and the inhibition of root elongation. What is more, the shoot growth of aap2 mutants was strongly retarded due to defects in cucumber root development. Moreover, aap2 mutants exhibited higher concentrations of amino acids and lignin in roots. We found that the mutant roots had a stronger ability to acidize medium. Furthermore, in the aap2 mutants, polar auxin transport was disrupted in the root tip, leading to high auxin levels in roots. Interestingly, slightly alkaline media rescued their severely reduced root growth by stimulating auxin pathway.


Asunto(s)
Cucumis sativus , Ácidos Indolacéticos , Ácidos Indolacéticos/metabolismo , Cucumis sativus/genética , Cucumis sativus/metabolismo , Raíces de Plantas/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Meristema/metabolismo , Regulación de la Expresión Génica de las Plantas
4.
Plant J ; 113(3): 546-561, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36534116

RESUMEN

The jasmonic acid (JA) signaling pathway is involved in the plant response to drought stress. JA and other hormones synergistically regulate the drought response in plants. However, the molecular mechanism underlying this synergism remains poorly defined. In the present study, transcriptome analyses of guard cells and quantitative PCR experiments revealed that MYC2 negatively regulated the negative regulator of ABA signaling, SlPP2C1, and the type-B response regulator in the cytokinin pathway, SlRR26, and this negative regulation was direct. SlRR26 overexpression reduced drought tolerance in transgenic tomatoes, whereas slrr26cr lines were more tolerant to drought. SlRR26 negatively modulated reactive oxygen species levels in stomata and stomatal closure through RobhB. Moreover, SlRR26 overexpression counteracted JA-mediated stomatal closure, suggesting that SlRR26 played a negative role in the JA-mediated drought response. These findings suggest that MYC2 plays a key role in JA-regulated stomatal closure under drought stress by inhibiting SlPP2C1 and SlRR26.


Asunto(s)
Solanum lycopersicum , Factores de Transcripción , Factores de Transcripción/metabolismo , Ácido Abscísico/metabolismo , Solanum lycopersicum/genética , Osmorregulación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico , Estomas de Plantas/fisiología , Regulación de la Expresión Génica de las Plantas , Plantas/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Sequías
5.
Plant Physiol ; 189(3): 1501-1518, 2022 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-35357489

RESUMEN

Sugars are necessary for plant growth and fruit development. Cucumber (Cucumis sativus L.) transports sugars, mainly raffinose family oligosaccharides (RFOs), in the vascular bundle. As the dominant sugars in cucumber fruit, glucose and fructose are derived from sucrose, which is the product of RFO hydrolysis by α-galactosidase (α-Gal). Here, we characterized the cucumber alkaline α-galactosidase 2 (CsAGA2) gene and found that CsAGA2 has undergone human selection during cucumber domestication. Further experiments showed that the expression of CsAGA2 increases gradually during fruit development, especially in fruit vasculature. In CsAGA2-RNA interference (RNAi) lines, fruit growth was delayed because of lower hexose production in the peduncle and fruit main vascular bundle (MVB). In contrast, CsAGA2-overexpressing (OE) plants displayed bigger fruits. Functional enrichment analysis of transcriptional data indicated that genes related to sugar metabolism, cell wall metabolism, and hormone signaling were significantly downregulated in the peduncle and fruit MVBs of CsAGA2-RNAi plants. Moreover, downregulation of CsAGA2 also caused negative feedback regulation on source leaves, which was shown by reduced photosynthetic efficiency, fewer plasmodesmata at the surface between mesophyll cell and intermediary cell (IC) or between IC and sieve element, and downregulated gene expression and enzyme activities related to phloem loading, as well as decreased sugar production and exportation from leaves and petioles. The opposite trend was observed in CsAGA2-OE lines. Overall, we conclude that CsAGA2 is essential for cucumber fruit set and development through mediation of sugar communication between sink strength and source activity.


Asunto(s)
Cucumis sativus , Proteínas de Plantas , alfa-Galactosidasa , Comunicación , Cucumis sativus/genética , Cucumis sativus/metabolismo , Frutas/genética , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sacarosa/metabolismo , alfa-Galactosidasa/genética , alfa-Galactosidasa/metabolismo
6.
Plant J ; 106(4): 1163-1176, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33713355

RESUMEN

Cucurbit phloem is complex, with large sieve tubes on both sides of the xylem (bicollateral phloem), and extrafascicular elements that form an intricate web linking the rest of the vasculature. Little is known of the physical interconnections between these networks or their functional specialization, largely because the extrafascicular phloem strands branch and turn at irregular angles. Here, export in the phloem from specific regions of the lamina of cucumber (Cucumis sativus L.) was mapped using carboxyfluorescein and 14 C as mobile tracers. We also mapped vascular architecture by conventional microscopy and X-ray computed tomography using optimized whole-tissue staining procedures. Differential gene expression in the internal (IP) and external phloem (EP) was analyzed by laser-capture microdissection followed by RNA-sequencing. The vascular bundles of the lamina form a nexus at the petiole junction, emerging in a predictable pattern, each bundle conducting photoassimilate from a specific region of the blade. The vascular bundles of the stem interconnect at the node, facilitating lateral transport around the stem. Elements of the extrafascicular phloem traverse the stem and petiole obliquely, joining the IP and EP of adjacent bundles. Using pairwise comparisons and weighted gene coexpression network analysis, we found differences in gene expression patterns between the petiole and stem and between IP and EP, and we identified hub genes of tissue-specific modules. Genes related to transport were expressed primarily in the EP while those involved in cell differentiation and development as well as amino acid transport and metabolism were expressed mainly in the IP.


Asunto(s)
Cucumis sativus/ultraestructura , Cucumis sativus/genética , Cucumis sativus/metabolismo , Floema/genética , Floema/metabolismo , Floema/ultraestructura , Brotes de la Planta/genética , Brotes de la Planta/metabolismo , Brotes de la Planta/ultraestructura , Xilema/genética , Xilema/metabolismo , Xilema/ultraestructura
7.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33602821

RESUMEN

Plant cystatins are cysteine proteinase inhibitors that play key roles in defense responses. In this work, we describe an unexpected role for the cystatin-like protein DEFORMED FLORAL BUD1 (CsDFB1) as a transcriptional regulator of local auxin distribution in cucumber (Cucumis sativus L.). CsDFB1 was strongly expressed in the floral meristems, floral primordia, and vasculature. RNA interference (RNAi)-mediated silencing of CsDFB1 led to a significantly increased number of floral organs and vascular bundles, together with a pronounced accumulation of auxin. Conversely, accompanied by a decrease of auxin, overexpression of CsDFB1 resulted in a dramatic reduction in floral organ number and an obvious defect in vascular patterning, as well as organ fusion. CsDFB1 physically interacted with the cucumber ortholog of PHABULOSA (CsPHB), an HD-ZIP III transcription factor whose transcripts exhibit the same pattern as CsDFB1 Overexpression of CsPHB increased auxin accumulation in shoot tips and induced a floral phenotype similar to that of CsDFB1-RNAi lines. Furthermore, genetic and biochemical analyses revealed that CsDFB1 impairs CsPHB-mediated transcriptional regulation of the auxin biosynthetic gene YUCCA2 and the auxin efflux carrier PIN-FORMED1, and thus plays a pivotal role in auxin distribution. In summary, we propose that the CsDFB1-CsPHB module represents a regulatory pathway for local auxin distribution that governs floral organogenesis and vascular differentiation in cucumber.


Asunto(s)
Cucumis sativus/crecimiento & desarrollo , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Organogénesis , Proteínas de Plantas/metabolismo , Cucumis sativus/genética , Cucumis sativus/metabolismo , Flores/genética , Flores/metabolismo , Fenotipo , Proteínas de Plantas/genética
8.
Plant Physiol ; 186(1): 640-654, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-33604597

RESUMEN

In the fleshy fruit of cucumbers (Cucumis sativus L.), the phloem flow is unloaded via an apoplasmic pathway, which requires protein carriers to export sugars derived from stachyose and raffinose into the apoplasm. However, transporter(s) involved in this process remain unidentified. Here, we report that a hexose transporter, CsSWEET7a (Sugar Will Eventually be Exported Transporter 7a), was highly expressed in cucumber sink tissues and localized to the plasma membrane in companion cells of the phloem. Its expression level increased gradually during fruit development. Down-regulation of CsSWEET7a by RNA interference (RNAi) resulted in smaller fruit size along with reduced soluble sugar levels and reduced allocation of 14C-labelled carbon to sink tissues. CsSWEET7a overexpression lines showed an opposite phenotype. Interestingly, genes encoding alkaline α-galactosidase (AGA) and sucrose synthase (SUS) were also differentially regulated in CsSWEET7a transgenic lines. Immunohistochemical analysis demonstrated that CsAGA2 co-localized with CsSWEET7a in companion cells, indicating cooperation between AGA and CsSWEET7a in fruit phloem unloading. Our findings indicated that CsSWEET7a is involved in sugar phloem unloading in cucumber fruit by removing hexoses from companion cells to the apoplasmic space to stimulate the raffinose family of oligosaccharides (RFOs) metabolism so that additional sugars can be unloaded to promote fruit growth. This study also provides a possible avenue towards improving fruit production in cucumber.


Asunto(s)
Cucumis sativus/crecimiento & desarrollo , Frutas/crecimiento & desarrollo , Proteínas de Transporte de Monosacáridos/genética , Floema/metabolismo , Proteínas de Plantas/genética , Cucumis sativus/genética , Cucumis sativus/metabolismo , Frutas/metabolismo , Proteínas de Transporte de Monosacáridos/metabolismo , Proteínas de Plantas/metabolismo
9.
Front Plant Sci ; 12: 758526, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35173746

RESUMEN

During anthesis, there is an increased demand for carbohydrates due to pollen maturation and nectary secretion that warrants a systematic phloem unloading strategy for sugar partitioning. Sugar transporters are key components of the apoplasmic phloem unloading strategy and control the sugar flux needed for plant development. Currently, the phloem unloading strategy during anthesis has not been explored in cucumber, and the question of which sugar transporters are active during flower anthesis is poorly understood. In this study, a study utilizing the phloem-mobile symplasmic tracer carboxyfluorescein (CF) suggested that the phloem unloading was symplasmically isolated in the receptacle and nectary of cucumber flowers at anthesis. We also identified a hexose transporter that is highly expressed in cucumber flower, Sugar Will Eventually be Exported Transporter 7a (SWEET7a). CsSWEET7a was mainly expressed in receptacle and nectary tissues in both male and female flowers, where its expression level increased rapidly right before anthesis. At anthesis, the CsSWEET7a protein was specifically localized to the phloem region of the receptacle and nectary, indicating that CsSWEET7a may function in the apoplasmic phloem unloading during flower anthesis. Although cucumber mainly transports raffinose family oligosaccharides (RFOs) in the phloem, sucrose, glucose, and fructose are the major sugars in the flower receptacle and the nectary as well as in nectar at anthesis. In addition, the transcript levels of genes encoding soluble sugar hydrolases (α-galactosidase, sucrose synthase, cytoplasmic invertase, and cell wall invertase) were correlated with that of CsSWEET7a. These results indicated that CsSWEET7a may be involved in sugar partitioning as an exporter in the phloem of the receptacle and nectary to supply carbohydrates for flower anthesis and nectar secretion in cucumber.

10.
Plants (Basel) ; 9(8)2020 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-32751984

RESUMEN

Amino acid transporters are the main mediators of nitrogen distribution throughout the plant body, and are essential for sustaining growth and development. In this review, we summarize the current state of knowledge on the identity and biological functions of amino acid transporters in plants, and discuss the regulation of amino acid transporters in response to environmental stimuli. We focus on transporter function in amino acid assimilation and phloem loading and unloading, as well as on the molecular identity of amino acid exporters. Moreover, we discuss the effects of amino acid transport on carbon assimilation, as well as their cross-regulation, which is at the heart of sustainable agricultural production.

11.
Plant Methods ; 14: 26, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29593827

RESUMEN

BACKGROUND: Guard cell protoplasts (GCPs) isolated from various plants have proven to be especially useful for studies of signal transduction pathways and plant development. But it is not easy to isolate highly purified preparations of large numbers of GCPs from plants. In this research, our focus is on a method to isolate large numbers of guard cells from tomato leaves. The protocols described yield millions of highly purified, viable GCPs, which are also suitable for studies on guard cell physiology. RESULTS: We developed an efficient method for isolating GCPs from epidermal fragments of tomato leaves. The protocol requires a two-step digestion to isolate high-quality tomato GCPs. In this procedure, cellulysin (in method L) was replaced by cellulose "Onozuka" RS (in method S) in the first digestion step, which indicated that cellulase RS was more effective than cellulysin. Method S dramatically shortened the time required for obtaining high yields and high-quality GCPs. Moreover, according to the GCP yields, hydroponic plants were more effective than substrate-cultured plants. CONCLUSIONS: In this paper, protocols for large-scale preparation of GCPs and mesophyll cell protoplasts were described, followed by some success examples of their use in biochemical and molecular approaches such as reverse-transcription polymerase chain reaction, real-time polymerase chain reaction and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The method was proved to be a more efficient GCP-isolating method, capable of providing high yields with better quality in less time.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA