Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Water Res ; 255: 121459, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38513370

RESUMEN

Capture and immobilization of 137Cs is urgent for radioactive contamination remediation and spent fuel treatment. Herein, an effective all-in-one treatment method to simultaneously adsorb and immobilize Cs+ without high-temperature treatment is proposed. According to the strategy of incorporating high-valency metal ions into molybdates to increase the material stability and affinity towards radionuclides, layered HMMoO6·nH2O (M = Ta (1), Nb (2)) are prepared. Both materials exhibit excellent acid resistance (even 15 mol/L HNO3). They maintain remarkable adsorption capacity for Cs+ in 1 mol/L HNO3 solutions and can selectively capture Cs+ under excessive competitive ions. Furthermore, they show successful cleanup for actual 137Cs-liquid-wastes generated during industrial production. In particular, adsorbed Cs+ can be firmly immobilized in interlayer spaces of materials due to the highly stable anionic framework. The removal mechanism is attributed to ion exchange between Cs+ and interlayer H+ by multiple characterizations. Study of the structure-function relationship shows that the occurrence of Cs+ ion exchange is closely related to plate-like layered structure. This work develops an efficient all-in-one treatment method for capturing and immobilizing radiocesium by ultra-stable inorganic solid acid materials with low energy consumption and high safety for radionuclide remediation.

2.
Small ; 19(24): e2208212, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36916691

RESUMEN

137 Cs and 90 Sr are hazardous to ecological environment and human health due to their strong radioactivity, long half-life, and high mobility. However, effective adsorption and separation of Cs+ and Sr2+ from acidic radioactive wastewater is challenging due to stability issues of material and the strong competition of protons. Herein, a K+ -activated niobium germanate (K-NGH-1) presents efficient Cs+ /Sr2+ coadsorption and highly selective Cs+ /Sr2+ separation, respectively, under different acidity conditions. In neutral solution, K-NGH-1 exhibits ultrafast adsorption kinetics and high adsorption capacity for both Cs+ and Sr2+ (qm Cs  = 182.91 mg g-1 ; qm Sr  = 41.62 mg g-1 ). In 1 M HNO3 solution, K-NGH-1 still possesses qm Cs of 91.40 mg g-1 for Cs+ but almost no adsorption for Sr2+ . Moreover, K-NGH-1 can effectively separate Cs+ from 1 M HNO3 solutions with excess competing Sr2+ and Mn + (Mn +  = Na+ , Ca2+ , Mg2+ ) ions. Thus, efficient separation of Cs+ and Sr2+ is realized under acidic conditions. Besides, K-NGH-1 shows excellent acid and radiation resistance and recyclability. All the merits above endow K-NGH-1 with the first example of niobium germanates for radionuclides remediation. This work highlights the facile pH control approach towards bifunctional ion exchangers for efficient Cs+ /Sr2+ coadsorption and selective separation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...