Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 5587, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961076

RESUMEN

Hybrid mapping is a powerful approach to efficiently identify and characterize genes regulated through mechanisms in cis. In this study, using reciprocal crosses of the phenotypically divergent Duroc and Lulai pig breeds, we perform a comprehensive multi-omic characterization of regulatory variation across the brain, liver, muscle, and placenta through four developmental stages. We produce one of the largest multi-omic datasets in pigs to date, including 16 whole genome sequenced individuals, as well as 48 whole genome bisulfite sequencing, 168 ATAC-Seq and 168 RNA-Seq samples. We develop a read count-based method to reliably assess allele-specific methylation, chromatin accessibility, and RNA expression. We show that tissue specificity was much stronger than developmental stage specificity in all of DNA methylation, chromatin accessibility, and gene expression. We identify 573 genes showing allele specific expression, including those influenced by parent-of-origin as well as allele genotype effects. We integrate methylation, chromatin accessibility, and gene expression data to show that allele specific expression can be explained in great part by allele specific methylation and/or chromatin accessibility. This study provides a comprehensive characterization of regulatory variation across multiple tissues and developmental stages in pigs.


Asunto(s)
Alelos , Metilación de ADN , Animales , Porcinos/genética , Femenino , Cromatina/genética , Cromatina/metabolismo , Especificidad de Órganos/genética , Hígado/metabolismo , Placenta/metabolismo , Masculino , Encéfalo/metabolismo , Sus scrofa/genética , Secuenciación Completa del Genoma , Embarazo , Multiómica
2.
Meat Sci ; 213: 109506, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38603965

RESUMEN

Muscle fiber properties exert a significant influence on pork quality, with cross-sectional area (CSA) being a crucial parameter closely associated with various meat quality indicators, such as shear force. Effectively identifying and segmenting muscle fibers in a robust manner constitutes a vital initial step in determining CSA. This step is highly intricate and time-consuming, necessitating an accurate and automated analytical approach. One limitation of existing methods is their tendency to perform well on high signal-to-noise ratio images of intact, healthy muscle fibers but their lack of validation on more complex image datasets featuring significant morphological changes, such as the presence of ice crystals. In this study, we undertake the fully automatic segmentation of muscle fiber microscopic images stained with myosin adenosine triphosphate (mATPase) activity using a deep learning architecture known as SOLOv2. Our objective is to efficiently derive accurate measurements of muscle fiber size and distribution. Tests conducted on actual images demonstrate that our method adeptly handles the intricate task of muscle fiber segmentation, yielding quantitative results amenable to statistical analysis and displaying reliability comparable to manual analysis.


Asunto(s)
Aprendizaje Profundo , Procesamiento de Imagen Asistido por Computador , Fibras Musculares Esqueléticas , Animales , Procesamiento de Imagen Asistido por Computador/métodos , Porcinos , Reproducibilidad de los Resultados , Músculo Esquelético/química
3.
Animals (Basel) ; 13(24)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38136908

RESUMEN

Enhancing the accuracy of genomic prediction is a key goal in genomic selection (GS) research. Integrating prior biological information into GS methods using appropriate models can improve prediction accuracy for complex traits. Genome-wide association study (GWAS) is widely utilized to identify potential candidate loci associated with complex traits in livestock and poultry, offering essential genomic insights. In this study, a GWAS was conducted on 685 Duroc × Landrace × Yorkshire (DLY) pigs to extract significant single-nucleotide polymorphisms (SNPs) as genomic features. We compared two GS models, genomic best linear unbiased prediction (GBLUP) and genomic feature BLUP (GFBLUP), by using imputed whole-genome sequencing (WGS) data on 651 Yorkshire pigs. The results revealed that the GBLUP model achieved prediction accuracies of 0.499 for backfat thickness (BFT) and 0.423 for loin muscle area (LMA). By applying the GFBLUP model with GWAS-based SNP preselection, the average prediction accuracies for BFT and LMA traits reached 0.491 and 0.440, respectively. Specifically, the GFBLUP model displayed a 4.8% enhancement in predicting LMA compared to the GBLUP model. These findings suggest that, in certain scenarios, the GFBLUP model may offer superior genomic prediction accuracy when compared to the GBLUP model, underscoring the potential value of incorporating genomic features to refine GS models.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 303: 123085, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37454497

RESUMEN

Rapid identification of unknown material samples using portable or handheld Raman spectroscopy detection equipment is becoming a common analytical tool. However, the design and implementation of a set of Raman spectroscopy-based devices for substance identification must include spectral sampling of standard reference substance samples, resolution matching between different devices, and the training process of the corresponding classification models. The process of selecting a suitable classification model is frequently time-consuming, and when the number of classes of substances to be recognised increases dramatically, recognition accuracy decreases dramatically. In this paper, we propose a fast classification method for Raman spectra based on deep metric learning networks combined with the Gramian angular difference field (GADF) image generation approach. First, we uniformly convert Raman spectra acquired at different resolutions into GADF images of the same resolution, addressing spectral dimension disparities induced by resolution differences in different Raman spectroscopy detection devices. Second, a network capable of implementing nonlinear distance measurements between GADF images of different classes of substances is designed based on a deep metric learning approach. The Raman spectra of 450 different mineral classes obtained from the RRUFF database were converted into GADF images and used to train this deep metric learning network. Finally, the trained network can be installed on an embedded computing platform and used in conjunction with portable or handheld Raman spectroscopic detection sensors to perform material identification tasks at various scales. A series of experiments demonstrate that our trained deep metric learning network outperforms existing mainstream machine learning models on classification tasks of different sizes. For the two tasks of Raman spectral classification of natural minerals of 260 classes and Raman spectral classification of pathogenic bacteria of 8 classes with significant noise, our suggested model achieved 98.05% and 90.13% classification accuracy, respectively. Finally, we also deployed the model in a handheld Raman spectrometer and conducted identification experiments on 350 samples of chemical substances attributed to 32 classes, achieving a classification accuracy of 99.14%. These results demonstrate that our method can greatly improve the efficiency of developing Raman spectroscopy-based substance detection devices and can be widely used in tasks of unknown substance identification.

5.
Spectrochim Acta A Mol Biomol Spectrosc ; 301: 122909, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37302195

RESUMEN

Froth flotation is the most critical process for separating stibnite from raw ore. Concentrate grade is a vital production indicator in the antimony flotation process. It is a direct reflection of the product quality of the flotation process and an essential basis for the dynamic adjustment of its operating parameters. Existing methods of measuring concentrate grades suffer from expensive measurement equipment, difficult maintenance of complex sampling systems, and extended testing times. This paper presents a nondestructive and fast methodology to quantify the concentrate grade in the antimony flotation process based on in situ Raman spectroscopy. A particular Raman spectroscopic measuring system is designed for on-line measurement of the Raman spectra of the mixed minerals from the froth layer during the antimony flotation process. To obtain representative Raman spectra that better characterize the concentrate grades, a traditional Raman spectroscopic system has been redesigned to account for the different interferences during actual flotation field acquisition. A one-dimensional convolutional neural network (1D-CNN) is combined with a gated recurrent unit (GRU) and applied to construct a model for online prediction of concentrate grades based on continuously collected Raman spectra of mixed minerals in the froth layer. With an average prediction error of 4.37% and a maximum prediction deviation of 10.56%, the quantitative analysis of concentrate grade by the model demonstrates that our method is distinguished by high accuracy, low deviation, and in situ analysis, and it essentially satisfies the requirements for online quantitative determination of concentrate grade in the antimony flotation site.


Asunto(s)
Antimonio , Espectrometría Raman , Redes Neurales de la Computación , Minerales
6.
Genes (Basel) ; 13(11)2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36421806

RESUMEN

The intuitive impression of pork is extremely important in terms of whether consumers are enthusiastic about purchasing it. Flesh color and intramuscular fat (IMF) are indispensable indicators in meat quality assessment. In this study, we determined the flesh color and intramuscular fat at 45 min and 12 h after slaughter (45 mFC, 45 mIMF, 12 hFC, and 12 hIMF) of 1518 commercial Duroc × Landrace × Large White (DLY) pigs. We performed a single nucleotide polymorphism (SNP) genome-wide association study (GWAS) analysis with 28,066 SNPs. This experiment found that the correlation between 45 mFC and 12 hFC was 0.343. The correlation between 45 mIMF and 12 hIMF was 0.238. The heritability of the traits 45 mFC, 12 hFC, 45 mIMF, and 12 hIMF was 0.112, 0.217, 0.139, and 0.178, respectively, and we identified seven SNPs for flesh color and three SNPs for IMF. Finally, several candidate genes regulating these four traits were identified. Three candidate genes related to flesh color were provided: SNCAIP and PRR16 on SSC2, ST3GAL4 on SSC5, and GALR1 on SSC1. A total of three candidate genes related to intramuscular fat were found, including ABLIM3 on SSC2, DPH5 on SSC4, and DOCK10 on SSC15. Furthermore, GO and KEGG analysis revealed that these genes are involved in the regulation of apoptosis and are implicated in functions such as pigmentation and skeletal muscle metabolism. This study applied GWAS to analyze the scoring results of flesh color and IMF in different time periods, and it further revealed the genetic structure of flesh color and IMF traits, which may provide important genetic loci for the subsequent improvement of pig meat quality traits.


Asunto(s)
Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Porcinos/genética , Animales , Sitios de Carácter Cuantitativo/genética , Carne/análisis , Polimorfismo de Nucleótido Simple/genética , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...